Table of Contents Author Guidelines Submit a Manuscript
Journal of Sensors
Volume 2016, Article ID 6070742, 7 pages
http://dx.doi.org/10.1155/2016/6070742
Research Article

DNA Hybridization Detection Based on Resonance Frequency Readout in Graphene on Au SPR Biosensor

1Department of Electrical and Electronic Engineering (EEE), Rajshahi University of Engineering and Technology (RUET), Rajshahi 6204, Bangladesh
2Faculty of Engineering and IT, University of Technology Sydney (UTS), Sydney, NSW 2007, Australia

Received 27 August 2015; Revised 19 October 2015; Accepted 25 October 2015

Academic Editor: Zhi-Mei Qi

Copyright © 2016 Md. Biplob Hossain and Md. Masud Rana. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Karimi, R. Yusof, R. Rahmani, H. Hosseinpour, and M. T. Ahmadi, “Development of solution-gated graphene transistor model for biosensors,” Nanoscale Research Letters, vol. 9, no. 1, pp. 1–11, 2014. View at Publisher · View at Google Scholar · View at Scopus
  2. C.-W. Huang, Y.-J. Huang, T.-H. Lin et al., “An integrated microcantilever-based wireless DNA chip for Hepatitis B Virus (HBV) DNA detection,” in Proceedings of the 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS '11), pp. 984–986, Seattle, Wash, USA, October 2011. View at Scopus
  3. M. Pumera, “Graphene in biosensing,” Materials Today, vol. 14, no. 7-8, pp. 308–315, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Homola, “Present and future of surface plasmon resonance biosensors,” Analytical and Bioanalytical Chemistry, vol. 377, no. 3, pp. 528–539, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Fu, S. Zhang, H. Chen, and J. Weng, “Graphene enhances the sensitivity of fiber-optic surface plasmon resonance biosensor,” IEEE Sensors Journal, vol. 15, no. 10, pp. 5478–5482, 2015. View at Publisher · View at Google Scholar
  6. N.-F. Chiu, W.-C. Lee, and T.-S. Jiang, “Constructing a novel asymmetric dielectric structure toward the realization of high-performance surface plasmon resonance biosensors,” IEEE Sensors Journal, vol. 13, no. 9, pp. 3483–3489, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. T.-J. Wang, C.-W. Tu, and F.-K. Liu, “Integrated-optic surface-plasmon-resonance biosensor using gold nanoparticles by bipolarization detection,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 11, no. 2, pp. 493–499, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Optics Express, vol. 18, no. 14, pp. 14395–14400, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Kim, K. Park, E.-J. Jeong, Y.-B. Shin, and B. H. Chung, “Surface plasmon resonance imaging analysis of protein-protein interactions using on-chip-expressed capture protein,” Analytical Biochemistry, vol. 351, no. 2, pp. 298–304, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Madeira, E. Vikeved, A. Nilsson, B. Sjögren, P. E. Andrén, and P. Svenningsson, “Identification of protein-protein interactions by surface plasmon resonance followed by mass spectrometry,” Current Protocols in Protein Science, vol. 65, pp. 19.21.1–19.21.9, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Majka and C. Speck, “Analysis of protein-DNA interactions using surface plasmon resonance,” Advances in Biochemical Engineering/Biotechnology, vol. 104, pp. 13–36, 2007. View at Google Scholar
  12. H. F. Teh, W. Y. X. Peh, X. Su, and J. S. Thomsen, “Characterization of protein-DNA interactions using surface plasmon resonance spectroscopy with various assay schemes,” Biochemistry, vol. 46, no. 8, pp. 2127–2135, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. C.-C. Fong, W.-P. Lai, Y.-C. Leung, S. C.-L. Lo, M.-S. Wong, and M. Yang, “Study of substrate-enzyme interaction between immobilized pyridoxamine and recombinant porcine pyridoxal kinase using surface plasmon resonance biosensor,” Biochimica et Biophysica Acta, vol. 1596, no. 1, pp. 95–107, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. Salamon, S. Cowell, E. Varga, H. I. Yamamura, V. J. Hruby, and G. Tollin, “Plasmon resonance studies of agonist/antagonist binding to the human delta-opioid receptor: new structural insights into receptor-ligand interactions,” Biophysical Journal, vol. 79, no. 5, pp. 2463–2474, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. R. L. Rich, L. R. Hoth, K. F. Geoghegan et al., “Kinetic analysis of estrogen receptor/ligand interactions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 13, pp. 8562–8567, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. O. L. Baron, D. Pauron, and S. Antipolis, “Protein-lipid interaction analysis by surface plasmon resonance (SPR),” Bio-Protocol, vol. 4, no. 18, pp. 1–8, 2014. View at Google Scholar
  17. E.-M. Erb, X. Chen, S. Allen et al., “Characterization of the surfaces generated by liposome binding to the modified dextran matrix of a surface plasmon resonance sensor chip,” Analytical Biochemistry, vol. 280, no. 1, pp. 29–35, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Beccati, K. M. Halkes, G. D. Batema et al., “SPR studies of carbohydrate-protein interactions: signal enhancement of low-molecular-mass analytes by organoplatinum(II)-labeling,” ChemBioChem, vol. 6, no. 7, pp. 1196–1203, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Zhang, L. Yang, B. Zhou et al., “Investigation of biological cell-protein interactions using SPR sensor through laser scanning confocal imaging-surface plasmon resonance system,” Spectrochimica Acta—Part A: Molecular and Biomolecular Spectroscopy, vol. 121, pp. 381–386, 2014. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Beseničar, P. Maček, J. H. Lakey, and G. Anderluh, “Surface plasmon resonance in protein-membrane interactions,” Chemistry and Physics of Lipids, vol. 141, no. 1-2, pp. 169–178, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Miyoshi, N. Suehiro, K. Tomoo et al., “Binding analyses for the interaction between plant virus genome-linked protein (VPg) and plant translational initiation factors,” Biochimie, vol. 88, no. 3-4, pp. 329–340, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Song, D. Li, W. Qi, M. Elstner, C. Fan, and H. Fang, “Graphene on Au(111): a highly conductive material with excellent adsorption properties for high-resolution bio/nanodetection and identification,” ChemPhysChem, vol. 11, no. 3, pp. 585–589, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. M. B. Hossain and M. M. Rana, “An effective compact-FDTD wideband modeling of graphene conductivity,” in Proceedings of the IEEE International Conference on Electrical Engineering and Information Communication Technology (ICEEICT '15), pp. 1–3, IEEE, Dhaka, Bangladesh, May 2015. View at Publisher · View at Google Scholar
  24. S. H. Choi, Y. L. Kim, and K. M. Byun, “Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors,” Optics Express, vol. 19, no. 2, pp. 458–466, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. R. L. Earp Jr., Multiwavelength surface plasmon resonance sensor designs for chemical and biochemical detection [Ph.D. thesis], 1998.
  26. L. Diéguez, N. Darwish, M. Mir, E. Martínez, M. Moreno, and J. Samitier, “Effect of the refractive index of buffer solutions in evanescent optical biosensors,” Sensor Letters, vol. 7, no. 5, pp. 851–855, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Diéguez, D. Caballero, J. Calderer, M. Moreno, E. Martínez, and J. Samitier, “Optical gratings coated with thin Si3N4 layer for efficient immunosensing by optical waveguide lightmode spectroscopy,” Biosensors, vol. 2, no. 2, pp. 114–126, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Boruah, D. Mohanta, A. Choudhury, P. Nath, and G. A. Ahmed, “Surface plasmon resonance based protein biosensing using a Kretschmann configured double prism arrangement,” IEEE Sensors Journal, vol. 15, no. 12, pp. 6791–6796, 2015. View at Publisher · View at Google Scholar
  29. R. Otupiri, E. K. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek, and A. Aggoun, “A novel birefrigent photonic crystal fiber surface plasmon resonance biosensor,” IEEE Photonics Journal, vol. 6, no. 4, 2014. View at Publisher · View at Google Scholar
  30. A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering, Prentice Hall, Upper Saddle River, NJ, USA, 1991.
  31. L.-X. Dong and Q. Chen, “Properties, synthesis, and characterization of graphene,” Frontiers of Materials Science in China, vol. 4, no. 1, pp. 45–51, 2010. View at Publisher · View at Google Scholar
  32. L.-J. Wang, G. Cao, T. Tu et al., “A graphene quantum dot with a single electron transistor as an integrated charge sensor,” Applied Physics Letters, vol. 97, no. 26, Article ID 262113, 2010. View at Publisher · View at Google Scholar · View at Scopus