Table of Contents Author Guidelines Submit a Manuscript
Journal of Sensors
Volume 2016, Article ID 6139802, 8 pages
http://dx.doi.org/10.1155/2016/6139802
Research Article

Detection of Defective Sensors in Phased Array Using Compressed Sensing and Hybrid Genetic Algorithm

1School of Engineering & Applied Sciences, ISRA University, Islamabad 44000, Pakistan
2Electrical Department, Air University, Islamabad 44000, Pakistan
3Electronic Department, International Islamic University, Islamabad 44000, Pakistan

Received 3 February 2015; Revised 12 June 2015; Accepted 14 July 2015

Academic Editor: Manuel Pineda-Sanchez

Copyright © 2016 Shafqat Ullah Khan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. J. Mailloux, Phased Array Antenna Handbook, Artech House, Norwood, Mass, USA, 2nd edition, 2005.
  2. G. Oliveri, M. Donelli, and A. Massa, “Linear array thinning exploiting almost difference sets,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 12, pp. 3800–3812, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Oliveri, L. Manica, and A. Massa, “ADS-based guidelines for thinned planar arrays,” IEEE Transactions on Antennas and Propagation, vol. 58, no. 6, pp. 1935–1948, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Carlin, G. Oliveri, and A. Massa, “On the robustness to element failures of linear ADS-thinned arrays,” IEEE Transactions on Antennas and Propagation, vol. 59, no. 12, pp. 4849–4853, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  5. S. U. Khan, I. M. Qureshi, F. Zaman, and A. Naveed, “Null placement and sidelobe suppression in failed array using symmetrical element failure technique and hybrid heuristic computation,” Progress In Electromagnetics Research B, no. 52, pp. 165–184, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. S. U. Khan, I. M. Qureshi, F. Zaman, B. Shoaib, A. Naveed, and A. Basit, “Correction of faulty sensors in phased array radars using symmetrical sensor failure technique and cultural algorithm with differential evolution,” The Scientific World Journal, vol. 2014, Article ID 852539, 10 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Patnaik, B. Choudhury, P. Pradhan, R. K. Mishra, and C. Christodoulou, “An ANN application for fault finding in antenna arrays,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 3, pp. 775–777, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. S. U. Khan, I. M. Qureshi, F. Zaman, A. Basit, and W. Khan, “Application of firefly algorithm to fault finding in linear arrays antenna,” World Applied Sciences Journal, vol. 26, no. 2, pp. 232–238, 2013. View at Publisher · View at Google Scholar · View at Scopus
  9. O. M. Bucci, M. D. Migliore, G. Panariello, and P. Sgambato, “Accurate diagnosis of conformal arrays from near-field data using the matrix method,” IEEE Transactions on Antennas and Propagation, vol. 53, no. 3, pp. 1114–1120, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. J. J. Lee, E. M. Ferren, D. P. Woollen, and K. M. Lee, “Near-field probe used as a diagnostic tool to locate defective elements in an array antenna,” IEEE Transactions on Antennas and Propagation, vol. 36, no. 6, pp. 884–889, 1988. View at Publisher · View at Google Scholar · View at Scopus
  11. J. A. Rodríguez-González, F. Ares-Pena, M. Fernández-Delgado, R. Iglesias, and S. Barro, “Rapid method for finding faulty elements in antenna arrays using far field pattern samples,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 6, pp. 1679–1683, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. M. D. Migliore, “A compressed sensing approach for array diagnosis from a small set of near-field measurements,” IEEE Transactions on Antennas and Propagation, vol. 59, no. 6, pp. 2127–2133, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. E. J. Candes and T. Tao, “Near-optimal signal recovery from random projections: universal encoding strategies?” IEEE Transactions on Information Theory, vol. 52, no. 12, pp. 5406–5425, 2006. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  14. M. Akçakaya and V. Tarokh, “Shannon-theoretic limits on noisy compressive sampling,” IEEE Transactions on Information Theory, vol. 56, no. 1, pp. 492–504, 2010. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  15. G. Oliveri, P. Rocca, and A. Massa, “Reliable diagnosis of large linear arrays—a Bayesian compressive sensing approach,” IEEE Transactions on Antennas and Propagation, vol. 60, no. 10, pp. 4627–4636, 2012. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  16. E. J. Candes, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Communications on Pure and Applied Mathematics, vol. 59, no. 8, pp. 1207–1223, 2006. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  17. E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 21–30, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, “Compressed sensing MRI: a look at how CS can improve on current imaging techniques,” IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 72–82, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,” IEEE Transactions on Signal Processing, vol. 56, no. 6, pp. 2346–2356, 2008. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  20. M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing, Springer, 2010.
  21. S. Mendelson, A. Pajor, and N. Tomczak-Jaegermann, “Uniform uncertainty principle for Bernoulli and subgaussian ensembles,” Constructive Approximation, vol. 28, no. 3, pp. 277–289, 2008. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  22. R. G. Baraniuk, “Compressive sensing,” IEEE Signal Processing Magazine, vol. 24, no. 4, pp. 118–124, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Haupt Randy and S. Ellen Haupt, Practical Genetic Algorithms, John Wiley & Sons, 2004.
  24. F. Zaman, I. M. Qureshi, A. Naveed, J. A. Khan, and R. M. A. Zahoor, “Amplitude and directional of arrival estimation: comparison between different techniques,” Progress in Electromagnetics Research B, vol. 39, pp. 319–335, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. F. Zaman, I. M. Qureshi, A. Naveed, and Z. U. Khan, “Joint estimation of amplitude, direction of arrival and range of near field sources using memetic computing,” Progress in Electromagnetics Research C, vol. 31, pp. 199–213, 2012. View at Google Scholar · View at Scopus