Table of Contents Author Guidelines Submit a Manuscript
Journal of Sensors
Volume 2017 (2017), Article ID 9581976, 11 pages
Research Article

Study of the Photo- and Thermoactivation Mechanisms in Nanoscale SOI Modulator

1Lev Academic Center, Faculty of Engineering, Department of Applied Physics/Electro-Optics Engineering, 9116001 Jerusalem, Israel
2Semiconductor Devices Laboratory, Faculty of Engineering, Bar-Ilan University, 52900 Ramat Gan, Israel
3Department of Electro-Optics, Faculty of Engineering, Bar-Ilan University, 52900 Ramat Gan, Israel

Correspondence should be addressed to Avi Karsenty

Received 5 July 2016; Revised 25 September 2016; Accepted 14 February 2017; Published 8 March 2017

Academic Editor: Francesco Dell'Olio

Copyright © 2017 Yaakov Mandelbaum et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


A new nanoscale silicon-based modulator has been investigated at different temperatures. In addition to these two advantages, nanoscale dimensions (versus MEMS temperature sensors) and integrated silicon-based material (versus polymers), the third novelty of such optoelectronic device is that it can be activated as a Silicon-On-Insulator Photoactivated Modulator (SOIPAM) or as a Silicon-On-Insulator Thermoactivated Modulator (SOITAM). In this work, static and time dependent temperature effects on the current have been investigated. The aim of the time dependent temperature simulation was to set a temporal pulse and to check, for given dimensions, how much time would it take for the temperature profile and for the change in the electrons’ concentration to come back to the steady state. Assuring that the thermal response is fast enough, the device can be operated as a modulator via thermal stimulation or, on the other hand, can be used as thermal sensor/imager. We present here the design, simulation, and model of the second generation which seems capable of speeding up the processing capabilities. This novel device can serve as a building block towards the development of optical/thermal data processing while breaking through the way to all optic processors based on silicon chips that are fabricated via typical microelectronics fabrication process.