Table of Contents
Journal of Synthetic Biology
Volume 2015 (2015), Article ID 178514, 10 pages
http://dx.doi.org/10.1155/2015/178514
Research Article

Synthetic Crossfeeding Cocultures in Yeast: Computational Model of Autoregulation and Design of a Tryptophan Export Device

1Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, 1428 Buenos Aires, Argentina
2Departamento de Fisiología, Biología Molecular y Celular, Instituto de Fisiologia, Biologia Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Técnicas and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, 1428 Buenos Aires, Argentina
3Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, 1428 Buenos Aires, Argentina
4Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IQUIBICEN-CONICET, Intendente Güiraldes 2160, Ciudad Universitaria, 1428 Buenos Aires, Argentina
5Protein Physiology Laboratory, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IQUIBICEN-CONICET, Intendente Güiraldes 2160, Ciudad Universitaria, 1428 Buenos Aires, Argentina

Received 14 August 2014; Revised 16 January 2015; Accepted 20 January 2015

Academic Editor: Andres Moya

Copyright © 2015 Alan Bush et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. H. Wintermute and P. A. Silver, “Dynamics in the mixed microbial concourse,” Genes and Development, vol. 24, no. 23, pp. 2603–2614, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. W. Shou, S. Ram, and J. M. G. Vilar, “Synthetic cooperation in engineered yeast populations,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 6, pp. 1877–1882, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Kerner, J. Park, A. Williams, and X. N. Lin, “A programmable escherichia coli consortium via tunable symbiosis,” PLoS ONE, vol. 7, no. 3, Article ID e34032, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. B. S. Khatri, A. Free, and R. J. Allen, “Oscillating microbial dynamics driven by small populations, limited nutrient supply and high death rates,” Journal of Theoretical Biology, vol. 314, pp. 120–129, 2012. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  5. A. Bush, A. Chernomoretz, R. Yu, A. Gordon, and A. Colman-Lerner, “Using Cell-ID 1.4 with R for microscope-based cytometry,” in Current Protocols in Molecular Biology, chapter 14, unit 14.18, 2012. View at Publisher · View at Google Scholar
  6. J. T. Pronk, “Auxotrophic yeast strains in fundamental and applied research,” Applied and Environmental Microbiology, vol. 68, no. 5, pp. 2095–2100, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Sherman, “Getting started with yeast,” Methods in Enzymology, vol. 350, pp. 3–41, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. B. G. Hall, “Selection-induced mutations occur in yeast,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 10, pp. 4300–4303, 1992. View at Publisher · View at Google Scholar · View at Scopus
  9. T. von der Haar, “A quantitative estimation of the global translational activity in logarithmically growing yeast cells,” BMC Systems Biology, vol. 2, article 87, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. D. W. Rogers, E. McConnell, and D. Greig, “Molecular quantification of Saccharomyces cerevisiaeα-pheromone secretion,” FEMS Yeast Research, vol. 12, no. 6, pp. 668–674, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. Registry of standard biological parts, HTTP://partsregistry.org.
  12. D. Derossi, G. Chassaing, and A. Prochiantz, “Trojan peptides: the penetratin system for intracellular delivery,” Trends in Cell Biology, vol. 8, no. 2, pp. 84–87, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. S. W. Jones, R. Christison, K. Bundell et al., “Characterisation of cell-penetrating peptide-mediated peptide delivery,” British Journal of Pharmacology, vol. 145, no. 8, pp. 1093–1102, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. A. G. Cochran, N. J. Skelton, and M. A. Starovasnik, “Tryptophan zippers: stable, monomeric β-hairpins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 10, pp. 5578–5583, 2001. View at Publisher · View at Google Scholar · View at Scopus