Table of Contents Author Guidelines Submit a Manuscript
Journal of Skin Cancer
Volume 2012, Article ID 907543, 11 pages
http://dx.doi.org/10.1155/2012/907543
Review Article

Patched Knockout Mouse Models of Basal Cell Carcinoma

1Department of Human Genetics, University Medical Center Göttingen, Heinrich-Düker Weg 12, 37073 Göttingen, Germany
2Department of Neuropathology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany

Received 12 July 2012; Accepted 6 August 2012

Academic Editor: Deric L. Wheeler

Copyright © 2012 Frauke Nitzki et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Lomas, J. Leonardi-Bee, and F. Bath-Hextall, “A systematic review of worldwide incidence of nonmelanoma skin cancer,” British Journal of Dermatology, vol. 166, no. 5, pp. 1069–1080, 2012. View at Google Scholar
  2. D. L. Miller and M. A. Weinstock, “Nonmelanoma skin cancer in the United States: incidence,” Journal of the American Academy of Dermatology, vol. 30, no. 5, pp. 774–778, 1994. View at Google Scholar · View at Scopus
  3. E. De Vries, L. V. Van De Poll-Franse, W. J. Louwman, F. R. De Gruijl, and J. W. W. Coebergh, “Predictions of skin cancer incidence in the Netherlands up to 2015,” British Journal of Dermatology, vol. 152, no. 3, pp. 481–488, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. L. A. Kwasniak and J. Garcia-Zuazaga, “Basal cell carcinoma: evidence-based medicine and review of treatment modalities,” International Journal of Dermatology, vol. 50, no. 6, pp. 645–658, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Roewert-Huber, B. Lange-Asschenfeldt, E. Stockfleth, and H. Kerl, “Epidemiology and aetiology of basal cell carcinoma,” British Journal of Dermatology, vol. 157, supplement 2, pp. 47–51, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. M. P. Staples, M. Elwood, R. C. Burton, J. L. Williams, R. Marks, and G. G. Giles, “Non-melanoma skin cancer in Australia: the 2002 national survey and trends since 1985,” Medical Journal of Australia, vol. 184, no. 1, pp. 6–10, 2006. View at Google Scholar · View at Scopus
  7. M. Sexton, D. B. Jones, and M. E. Maloney, “Histologic pattern analysis of basal cell carcinoma: study of a series of 1039 consecutive neoplasms,” Journal of the American Academy of Dermatology, vol. 23, no. 6, pp. 1118–1126, 1990. View at Google Scholar · View at Scopus
  8. A. N. Crowson, “Basal cell carcinoma: biology, morphology and clinical implications,” Modern Pathology, vol. 19, supplement 2, pp. S127–S147, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. E. H. Epstein, “Basal cell carcinomas: attack of the hedgehog,” Nature Reviews Cancer, vol. 8, no. 10, pp. 743–754, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. S. J. Scales and F. J. de Sauvage, “Mechanisms of Hedgehog pathway activation in cancer and implications for therapy,” Trends in Pharmacological Sciences, vol. 30, no. 6, pp. 303–312, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Dahmane, J. Lee, P. Robins, P. Heller, and A. Ruiz I Altaba, “Activation of the transcription factor Gli1 and the sonic hedgehog signalling pathway in skin tumours,” Nature, vol. 389, no. 6653, pp. 876–881, 1997. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Reifenberger, M. Wolter, C. B. Knobbe et al., “Somatic mutations in the PTCH, SMOH, SUFUH and TP53 genes in sporadic basal cell carcinomas,” British Journal of Dermatology, vol. 152, no. 1, pp. 43–51, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Auepemkiate, P. Boonyaphiphat, and P. Thongsuksai, “p53 expression related to the aggressive infiltrative histopathological feature of basal cell carcinoma,” Histopathology, vol. 40, no. 6, pp. 568–573, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Bolshakov, C. M. Walker, S. S. Strom et al., “p53 mutations in human aggressive and nonaggressive basal and squamous cell carcinomas,” Clinical Cancer Research, vol. 9, no. 1, pp. 228–234, 2003. View at Google Scholar · View at Scopus
  15. H. Ansarin, M. Daliri, and R. Soltani-Arabshahi, “Expression of p53 in aggressive and non-aggressive histologic variants of basal cell carcinoma,” European Journal of Dermatology, vol. 16, no. 5, pp. 543–547, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. S. H. Yang, T. Andl, V. Grachtchouk et al., “Pathological responses to oncogenic Hedgehog signaling in skin are dependent on canonical Wnt/β-catenin signaling,” Nature Genetics, vol. 40, no. 9, pp. 1130–1135, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Doglioni, S. Piccinin, S. Demontis et al., “Alterations of β-catenin pathway in non-melanoma skin tumors: loss of α-ABC nuclear reactivity correlates with the presence of β-catenin gene mutation,” American Journal of Pathology, vol. 163, no. 6, pp. 2277–2287, 2003. View at Google Scholar · View at Scopus
  18. M. El-Bahrawy, N. El-Masry, M. Alison, R. Poulsom, and M. Fallowfield, “Expression of β-catenin in basal cell carcinoma,” British Journal of Dermatology, vol. 148, no. 5, pp. 964–970, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. H. G. Pálmer, F. Anjos-Afonso, G. Carmeliet, H. Takeda, and F. M. Watt, “The vitamin D receptor is a Wnt effector that controls hair follicle differentiation and specifies tumor type in adult epidermis,” PLoS ONE, vol. 3, no. 1, Article ID e1483, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Nitzki, A. Zibat, S. König et al., “Tumor stroma-derived Wnt5a induces differentiation of basal cell carcinoma of PTCH-mutant mice via caMKII,” Cancer Research, vol. 70, no. 7, pp. 2739–2748, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Hafner, M. Landthaler, and T. Vogt, “Activation of the PI3K/AKT signalling pathway in non-melanoma skin cancer is not mediated by oncogenic PIK3CA and AKT1 hotspot mutations,” Experimental Dermatology, vol. 19, no. 8, pp. e222–e227, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Eberl, S. Klingler, D. Mangelberger et al., “Hedgehog-EGFR cooperation response genes determine the oncogenic phenotype of basal cell carcinoma and tumour-initiating pancreatic cancer cells,” EMBO Molecular Medicine, vol. 4, no. 3, pp. 218–233, 2012. View at Google Scholar
  23. J. W. Tjiu, J. S. Chen, C. T. Shun et al., “Tumor-associated macrophage-induced invasion and angiogenesis of human basal cell carcinoma cells by cyclooxygenase-2 induction,” Journal of Investigative Dermatology, vol. 129, no. 4, pp. 1016–1025, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. K. P. Dingemans, M. D. Ramkema, G. Koopman, A. C. Van Der Wal, P. K. Das, and S. T. Pals, “The expression of CD44 glycoprotein adhesion molecules in basal cell carcinomas is related to growth pattern and invasiveness,” British Journal of Dermatology, vol. 140, no. 1, pp. 17–25, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. J. B. Sneddon, H. H. Zhen, K. Montgomery et al., “Bone morphogenetic protein antagonist gremlin 1 is wideley expressed by cancer-associated stromal cells and can promote tumor cell proliferation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 40, pp. 14842–14847, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Valin, S. Barnay-Verdier, T. Robert et al., “PTCH1+/- dermal fibroblasts isolated from healthy skin of Gorlin syndrome patients exhibit features of carcinoma associated fibroblasts,” PLoS ONE, vol. 4, no. 3, Article ID e4818, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Rittié, S. Kansra, S. W. Stoll et al., “Differential ErbB1 signaling in squamous cell versus basal cell carcinoma of the skin,” American Journal of Pathology, vol. 170, no. 6, pp. 2089–2099, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Lee and E. D. Baron, “Photodynamic therapy: current evidence and applications in dermatology,” Seminars in Cutaneous Medicine and Surgery, vol. 30, no. 4, pp. 199–209, 2011. View at Google Scholar
  29. J. Wenzel, M. Uerlich, O. Haller, T. Bieber, and T. Tueting, “Enhanced type I interferon signaling and recruitment of chemokine receptor CXCR3-expressing lymphocytes into the skin following treatment with the TLR7-agonist imiquimod,” Journal of Cutaneous Pathology, vol. 32, no. 4, pp. 257–262, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. I. Moesen, M. Duncan, C. Cates et al., “Nitrous oxide cryotherapy for primary periocular basal cell carcinoma: outcome at 5 years follow-up,” British Journal of Ophthalmology, vol. 95, no. 12, pp. 1679–1681, 2011. View at Google Scholar
  31. R. I. Ceilley and J. Q. Del Rosso, “Current modalities and new advances in the treatment of basal cell carcinoma,” International Journal of Dermatology, vol. 45, no. 5, pp. 489–498, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Talpale, J. K. Chen, M. K. Cooper et al., “Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine,” Nature, vol. 406, no. 6799, pp. 1005–1009, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Goppner and M. Leverkus, “Basal cell carcinoma: from the molecular understanding of the pathogenesis to targeted therapy of progressive disease,” Journal of Skin Cancer, vol. 2011, Article ID 650258, 8 pages, 2011. View at Publisher · View at Google Scholar
  34. A. Dlugosz, S. Agrawal, and P. Kirkpatrick, “Vismodegib,” Nature Reviews Drug Discovery, vol. 11, no. 6, pp. 437–438, 2012. View at Google Scholar
  35. C. M. Rudin, “Vismodegib,” Clinical Cancer Research, vol. 18, no. 12, pp. 3218–3222, 2012. View at Google Scholar
  36. J. Y. Tang, J. M. Mackay-Wiggan, M. Aszterbaum et al., “Inhibiting the hedgehog pathway in patients with the basal-cell nevus syndrome,” New England Journal of Medicine, vol. 366, no. 23, pp. 2180–2188, 2012. View at Google Scholar
  37. M. E. Hutchin, M. S. T. Kariapper, M. Grachtchouk et al., “Sustained Hedgehog signaling is required for basal cell carcinoma proliferation and survival: conditional skin tumorigenesis recapitulates the hair growth cycle,” Genes and Development, vol. 19, no. 2, pp. 214–223, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Grachtchouk, R. Mo, S. Yu et al., “Basal cell carcinomas in mice overexpressing Gli2 in skin,” Nature Genetics, vol. 24, no. 3, pp. 216–217, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. V. Grachtchouk, M. Grachtchouk, L. Lowe et al., “The magnitude of hedgehog signaling activity defines skin tumor phenotype,” EMBO Journal, vol. 22, no. 11, pp. 2741–2751, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Nilsson, A. B. Undèn, D. Krause et al., “Induction of basal cell carcinomas and trichoepitheliomas in mice overexpressing GLI-1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 7, pp. 3438–3443, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. K. K. Youssef, A. Van Keymeulen, G. Lapouge et al., “Identification of the cell lineage at the origin of basal cell carcinoma,” Nature Cell Biology, vol. 12, no. 3, pp. 299–305, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Sheng, S. Goich, A. Wang et al., “Dissecting the oncogenic potential of Gli2: deletion of an NH2-terminal fragment alters skin tumor phenotype,” Cancer Research, vol. 62, no. 18, pp. 5308–5316, 2002. View at Google Scholar · View at Scopus
  43. A. E. Oro, K. M. Higgins, Z. Hu, J. M. Bonifas, E. H. Epstein, and M. P. Scott, “Basal cell carcinomas in mice overexpressing sonic hedgehog,” Science, vol. 276, no. 5313, pp. 817–821, 1997. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Adolphe, R. Hetherington, T. Ellis, and B. Wainwright, “Patched1 functions as a gatekeeper by promoting cell cycle progression,” Cancer Research, vol. 66, no. 4, pp. 2081–2088, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Mancuso, S. Pazzaglia, M. Tanori et al., “Basal cell carcinoma and its development: insights from radiation-induced tumors in Ptch1-deficient mice,” Cancer Research, vol. 64, no. 3, pp. 934–941, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. G. Y. Wang, P. L. So, L. Wang, E. Libove, J. Wang, and E. H. Epstein, “Establishment of murine Basal cell carcinoma allografts: a potential model for preclinical drug testing and for molecular analysis,” Journal of Investigative Dermatology, vol. 131, no. 11, pp. 2298–2305, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Makino, H. Masuya, J. Ishijima, Y. Yada, and T. Shiroishi, “A spontaneous mouse mutation, mesenchymal dysplasia (mes), is caused by a deletion of the most C-terminal cytoplasmic domain of Patched (ptc),” Developmental Biology, vol. 239, no. 1, pp. 95–106, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. E. Nieuwenhuis, P. C. Barnfield, S. Makino, and C. C. Hui, “Epidermal hyperplasia and expansion of the interfollicular stem cell compartment in mutant mice with a C-terminal truncation of Patched1,” Developmental Biology, vol. 308, no. 2, pp. 547–560, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. Z. J. Li and C. C. Hui, “BCC and the secret lives of Patched: insights from Patched mouse models,” in Basal Cell Carcinoma, V. Madan, Ed., 2012. View at Google Scholar
  50. A. E. Oro and K. Higgins, “Hair cycle regulation of Hedgehog signal reception,” Developmental Biology, vol. 255, no. 2, pp. 238–248, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. L. V. Goodrich, L. Milenković, K. M. Higgins, and M. P. Scott, “Altered neural cell fates and medulloblastoma in mouse Patched mutants,” Science, vol. 277, no. 5329, pp. 1109–1113, 1997. View at Publisher · View at Google Scholar · View at Scopus
  52. H. Hahn, L. Wojnowski, A. M. Zimmer, J. Hall, G. Miller, and A. Zimmer, “Rhabdomyosarcomas and radiation hypersensitivity in a mouse model of Gorlin syndrome,” Nature Medicine, vol. 4, no. 5, pp. 619–622, 1998. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Aszterbaum, J. Epstein, O. Anthony et al., “Ultraviolet and ionizing radiation enhance the growth of BCC and trichoblastomas in Patched heterozygous knockout mice,” Nature Medicine, vol. 5, no. 11, pp. 1285–1291, 1999. View at Publisher · View at Google Scholar · View at Scopus
  54. J. L. Hebert, F. Khugyani, M. Athar, L. Kopelovich, E. H. Epstein, and M. Aszterbaum, “Chemoprevention of basal cell carcinomas in the ptc1+/- mouse-green and black tea,” Skin Pharmacology and Applied Skin Physiology, vol. 14, no. 6, pp. 358–362, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. P. L. So, K. Lee, J. Hebert et al., “Topical tazarotene chemoprevention reduces basal cell carcinoma number and size and Ptch1+/- mice exposed to ultraviolet or ionizing radiation,” Cancer Research, vol. 64, no. 13, pp. 4385–4389, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. S. J. Miller, “Biology of basal cell carcinoma,” Journal of the American Academy of Dermatology, vol. 24, no. 1, pp. 1–13, 1991. View at Google Scholar · View at Scopus
  57. M. R. Gailani, M. Stahle-Backdahl, D. J. Leffell et al., “The role of the human homologue of Drosophila Patched in sporadic basal cell carcinomas,” Nature Genetics, vol. 14, no. 1, pp. 78–81, 1996. View at Publisher · View at Google Scholar · View at Scopus
  58. A. B. Undén, P. G. Zaphiropoulos, K. Bruce, R. Toftgård, and M. Ståhle-Bäckdahl, “Human Patched (Ptch) mRNA is overexpressed consistently in tumor cells of both familial and sporadic basal cell carcinoma,” Cancer Research, vol. 57, no. 12, pp. 2336–2340, 1997. View at Google Scholar · View at Scopus
  59. M. T. Teh, D. Blaydon, T. Chaplin et al., “Genomewide single nucleotide polymorphism microarray mapping in basal cell carcinomas unveils uniparental disomy as a key somatic event,” Cancer Research, vol. 65, no. 19, pp. 8597–8603, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Athar, C. Li, X. Tang et al., “Inhibition of smoothened signaling prevents ultraviolet B-induced basal cell carcinomas through regulation of fas expression and apoptosis,” Cancer Research, vol. 64, no. 20, pp. 7545–7552, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. J. A. Williams, O. M. Guicherit, B. I. Zaharian et al., “Identification of a small molecule inhibitor of the hedgehog signaling pathway: effects on basal cell carcinoma-like lesions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 8, pp. 4616–4621, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. X. Tang, A. L. Kim, D. J. Feith et al., “Ornithine decarboxylase is a target for chemoprevention of basal and squamous cell carcinomas in Ptch1+/- mice,” Journal of Clinical Investigation, vol. 113, no. 6, pp. 867–875, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. P. L. So, M. A. Fujimoto, and E. H. Epstein Jr, “Pharmacologic retinoid signaling and physiologic retinoic acid receptor signaling inhibit basal cell carcinoma tumorigenesis,” Molecular Cancer Therapeutics, vol. 7, no. 5, pp. 1275–1284, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. J. Y. Tang, M. Aszterbaum, M. Athar et al., “Basal cell carcinoma chemoprevention with nonsteroidal anti-inflammatory drugs in genetically predisposed PTCH1+/- humans and mice,” Cancer Prevention Research, vol. 3, no. 1, pp. 25–34, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. T. Tang, J. Y. Tang, D. Li et al., “Targeting superficial or nodular basal cell carcinoma with topically formulated small molecule inhibitor of smoothened,” Clinical Cancer Research, vol. 17, no. 10, pp. 3378–3387, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. J. Kim, J. Y. Tang, R. Gong et al., “Itraconazole, a commonly used antifungal that inhibits Hedgehog pathway activity and cancer growth,” Cancer Cell, vol. 17, no. 4, pp. 388–399, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. J. Y. Tang, T. Z. Xiao, Y. Oda et al., “Vitamin D3 inhibits hedgehog signaling and proliferation in murine basal cell carcinomas,” Cancer Prevention Research, vol. 4, no. 5, pp. 744–751, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. A. Uhmann, H. Niemann, B. Lammering et al., “Antitumoral effects of calcitriol in basal cell carcinomas involve inhibition of hedgehog signaling and induction of vitamin D receptor signaling and differentiation,” Molecular Cancer Therapeutics, vol. 10, no. 11, pp. 2179–2188, 2011. View at Google Scholar
  69. S. S. Gökmen, A. C. Aygit, M. S. Ayhan, F. Yorulmaz, and Ş. Gülen, “Significance of arginase and ornithine in malignant tumors of the human skin,” Journal of Laboratory and Clinical Medicine, vol. 137, no. 5, pp. 340–344, 2001. View at Publisher · View at Google Scholar · View at Scopus
  70. M. K. Smith, C. S. Trempus, and S. K. Gilmour, “Co-operation between follicular ornithine decarboxylase and v-Ha-ras induces spontaneous papillomas and malignant conversion in transgenic skin,” Carcinogenesis, vol. 19, no. 8, pp. 1409–1415, 1998. View at Publisher · View at Google Scholar · View at Scopus
  71. L. Altucci and H. Gronemeyer, “The promise of retinoids to fight against cancer,” Nature Reviews Cancer, vol. 1, no. 3, pp. 181–193, 2001. View at Google Scholar · View at Scopus
  72. G. J. Butler, R. Neale, A. C. Green, N. Pandeya, and D. C. Whiteman, “Nonsteroidal anti-inflammatory drugs and the risk of actinic keratoses and squamous cell cancers of the skin,” Journal of the American Academy of Dermatology, vol. 53, no. 6, pp. 966–972, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. N. Ahmad and H. Mukhtar, “Cutaneous photochemoprotection by green tea: a brief review,” Skin Pharmacology and Applied Skin Physiology, vol. 14, no. 2, pp. 69–76, 2001. View at Publisher · View at Google Scholar · View at Scopus
  74. M. F. Bijlsma, C. A. Spek, D. Zivkovic, S. van de Water, F. Rezaee, and M. P. Peppelenbosch, “Repression of smoothened by Patched-dependent (pro-)vitamin D3 secretion.,” PLoS biology, vol. 4, no. 8, p. e232, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. M. Kasper, V. Jaks, A. Are et al., “Wounding enhances epidermal tumorigenesis by recruiting hair follicle keratinocytes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 10, pp. 4099–4104, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. T. Ellis, I. Smyth, E. Riley et al., “Patched 1 conditional null allele in mice,” Genesis, vol. 36, no. 3, pp. 158–161, 2003. View at Publisher · View at Google Scholar · View at Scopus
  77. A. Schneider, Y. Zhang, Y. Guan, L. S. Davis, and M. D. Breyer, “Differential, inducible gene targeting in renal epithelia, vascular endothelium, and viscera of Mx1Cre mice,” American Journal of Physiology, vol. 284, no. 2, pp. F411–F417, 2003. View at Google Scholar · View at Scopus
  78. S. L. Siggins, N. Y. N. Nguyen, M. P. McCormack et al., “The Hedgehog receptor Patched1 regulates myeloid and lymphoid progenitors by distinct cell-extrinsic mechanisms,” Blood, vol. 114, no. 5, pp. 995–1004, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. K. K. Mak, M. H. Chen, T. F. Day, P. T. Chuang, and Y. Yang, “Wnt/β-catenin signaling interacts differentially with Ihh signaling in controlling endochondral bone and synovial joint formation,” Development, vol. 133, no. 18, pp. 3695–3707, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. T. Shimokawa, F. Rahnama, and P. G. Zaphiropoulos, “A novel first exon of the Patched1 gene is upregulated by Hedgehog signaling resulting in a protein with pathway inhibitory functions,” FEBS Letters, vol. 578, no. 1-2, pp. 157–162, 2004. View at Publisher · View at Google Scholar · View at Scopus
  81. E. Taniguchi, J. C. Min, B. R. Arenkiel et al., “Bortezomib reverses a post-translational mechanism of tumorigenesis for Patched1 haploinsufficiency in medulloblastoma,” Pediatric Blood and Cancer, vol. 53, no. 2, pp. 136–144, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. K. Nagao, M. Toyoda, K. Takeuchi-Inoue, K. Fujii, M. Yamada, and T. Miyashita, “Identification and characterization of multiple isoforms of a murine and human tumor suppressor, Patched, having distinct first exons,” Genomics, vol. 85, no. 4, pp. 462–471, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. K. Nagao, N. Togawa, K. Fujii et al., “Detecting tissue-specific alternative splicing and disease-associated aberrant splicing of the PTCH gene with exon junction microarrays,” Human Molecular Genetics, vol. 14, no. 22, pp. 3379–3388, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. A. Uhmann, K. Dittmann, F. Nitzki et al., “The Hedgehog receptor Patched controls lymphoid lineage commitment,” Blood, vol. 110, no. 6, pp. 1814–1823, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. A. Zibat, A. Uhmann, F. Nitzki et al., “Time-point and dosage of gene inactivation determine the tumor spectrum in conditional PTCH knockouts,” Carcinogenesis, vol. 30, no. 6, pp. 918–926, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. F. Nitzki, A. Zibat, A. Frommhold et al., “Uncommitted precursor cells might contribute to increased incidence of embryonal rhabdomyosarcoma in heterozygous Patched1-mutant mice,” Oncogene, 2011. View at Publisher · View at Google Scholar · View at Scopus
  87. D. Hameyer, A. Loonstra, L. Eshkind et al., “Toxicity of ligand-dependent Cre recombinases and generation of a conditional Cre deleter mouse allowing mosaic recombination in peripheral tissues,” Physiological Genomics, vol. 31, no. 1, pp. 32–41, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. D. Metzger and P. Chambon, “Site- and time-specific gene targeting in the mouse,” Methods, vol. 24, no. 1, pp. 71–80, 2001. View at Publisher · View at Google Scholar · View at Scopus
  89. A. K. Indra, X. Warot, J. Brocard et al., “Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases,” Nucleic Acids Research, vol. 27, no. 22, pp. 4324–4327, 1999. View at Publisher · View at Google Scholar · View at Scopus
  90. T. Oskarsson, M. A. G. Essers, N. Dubois et al., “Skin epidermis lacking the c-myc gene is resistant to Ras-driven tumorigenesis but can reacquire sensitivity upon additional loss of the p21 Cip1 gene,” Genes and Development, vol. 20, no. 15, pp. 2024–2029, 2006. View at Publisher · View at Google Scholar · View at Scopus
  91. K. Ehrenreiter, F. Kern, V. Velamoor et al., “Raf-1 addiction in Ras-induced skin carcinogenesis,” Cancer Cell, vol. 16, no. 2, pp. 149–160, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. A. Dumortier, A. D. Durham, M. D. Piazza et al., “Atopic dermatitis-like disease and associated lethal myeloproliferative disorder arise from loss of notch signaling in the murine skin,” PLoS ONE, vol. 5, no. 2, Article ID e9258, 2010. View at Publisher · View at Google Scholar · View at Scopus
  93. Y. Liu, J. Suckale, J. Masjkur et al., “Tamoxifen-independent recombination in the RIP-CreER mouse,” PLoS ONE, vol. 5, no. 10, Article ID e13533, 2010. View at Publisher · View at Google Scholar · View at Scopus
  94. S. Peukert and K. Miller-Moslin, “Small-molecule inhibitors of the hedgehog signaling pathway as cancer therapeutics,” ChemMedChem, vol. 5, no. 4, pp. 500–512, 2010. View at Publisher · View at Google Scholar · View at Scopus