Table of Contents Author Guidelines Submit a Manuscript
Journal of Skin Cancer
Volume 2012, Article ID 981308, 13 pages
Research Article

Genome-Wide Analysis of Gene and Protein Expression of Dysplastic Naevus Cells

1Department of Dermatology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
2Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
3Center for Human and Clinical Genetics, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands

Received 9 August 2012; Revised 10 October 2012; Accepted 11 October 2012

Academic Editor: Lionel Larue

Copyright © 2012 Linda Gao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Cutaneous melanoma, a type of skin tumor originating from melanocytes, often develops from premalignant naevoid lesions via a gradual transformation process driven by an accumulation of (epi)genetic lesions. These dysplastic naevi display altered morphology and often proliferation of melanocytes. Additionally, melanocytes in dysplastic naevi show structural mitochondrial and melanosomal alterations and have elevated reactive oxygen species (ROS) levels. For this study we performed genome-wide expression and proteomic analysis of melanocytes from dysplastic naevus (DNMC) and adjacent normal skin (MC) from 18 patients. Whole genome expression profiles of the DNMC and MC of each individual patient subjected to GO-based comparative statistical analysis yielded significantly differentially expressed GO classes including “organellar ribosome,” “mitochondrial ribosome,” “hydrogen ion transporter activity,” and “prefoldin complex.” Validation of 5 genes from these top GO classes revealed a heterogeneous differential expression pattern. Proteomic analysis demonstrated differentially expressed proteins in DNMC that are involved in cellular metabolism, detoxification, and cytoskeletal organization processes, such as GTP-binding Rho-like protein CDC42, glutathione-S-transferase omega-1 and prolyl 4-hydroxylase. Collectively these results point to deregulation of cellular processes, such as metabolism and protein synthesis, consistent with the observed elevated oxidative stress levels in DNMC potentially resulting in oxidative DNA damage in these cells.