Table of Contents Author Guidelines Submit a Manuscript
Journal of Solar Energy
Volume 2013, Article ID 147270, 6 pages
http://dx.doi.org/10.1155/2013/147270
Research Article

Nanostructured CuO Thin Films Prepared through Sputtering for Solar Selective Absorbers

1School of Energy, Environment and Natural Resources, Madurai Kamaraj University, Madurai 625 021, India
2School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India

Received 28 April 2013; Revised 31 August 2013; Accepted 31 August 2013

Academic Editor: Xin Wang

Copyright © 2013 Senthuran Karthick Kumar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. D. Lee, W. C. Jung, and J. H. Kim, “Thermal degradation of black chrome coatings,” Solar Energy Materials and Solar Cells, vol. 63, no. 2, pp. 125–137, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. N. C. Bhowmik, J. Rahman, M. A. A. Khan, and Z. H. Mazumder, “Preparation of selective surfaces and determination of optimum thickness for maximum selectivity,” Renewable Energy, vol. 24, no. 3-4, pp. 663–666, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Katzen, E. Levy, and Y. Mastai, “Thin films of silica-carbon nanocomposites for selective solar absorbers,” Applied Surface Science, vol. 248, no. 1–4, pp. 514–517, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Vince, A. Šurca Vuk, U. Opara Krašovec, B. Orel, M. Köhl, and M. Heck, “Solar absorber coatings based on CoCuMnOx spinels prepared via the sol-gel process: structural and optical properties,” Solar Energy Materials and Solar Cells, vol. 79, no. 3, pp. 313–330, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. H. He, P. Bourges, Y. Sidis et al., “Magnetic resonant mode in the single-layer high-temperature superconductor Tl2Ba2CuO6+δ,” Science, vol. 295, no. 5557, pp. 1045–1047, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. W. Jia, E. Reitz, P. Shimpi, E. G. Rodriguez, P.-X. Gao, and Y. Lei, “Spherical CuO synthesized by a simple hydrothermal reaction: concentration-dependent size and its electrocatalytic application,” Materials Research Bulletin, vol. 44, no. 8, pp. 1681–1686, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Orel, F. Švegl, N. Bukovec, and M. Kosec, “Structural and optical characterization of CuO particulate solid films and the corresponding gels and xerogels,” Journal of Non-Crystalline Solids, vol. 159, no. 1-2, pp. 49–64, 1993. View at Google Scholar · View at Scopus
  8. A. Y. Oral, E. Menşur, M. H. Aslan, and E. Başaran, “The preparation of copper(II) oxide thin films and the study of their microstructures and optical properties,” Materials Chemistry and Physics, vol. 83, no. 1, pp. 140–144, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. X. Jiang, T. Herricks, and Y. Xia, “CuO nanowires can be synthesized by heating copper substrates in air,” Nano Letters, vol. 2, no. 12, pp. 1333–1338, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Voinea, C. Vladuta, C. Bogatu, and A. Duta, “Surface properties of copper based cermet materials,” Materials Science and Engineering B, vol. 152, no. 1–3, pp. 76–80, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Richharia, K. L. Chopra, and M. C. Bhatnagar, “Surface analysis of a black copper selective coating,” Solar Energy Materials, vol. 23, no. 1, pp. 93–109, 1991. View at Google Scholar · View at Scopus
  12. J. Morales, L. Sánchez, F. Martín, J. R. Ramos-Barrado, and M. Sánchez, “Use of low-temperature nanostructured CuO thin films deposited by spray-pyrolysis in lithium cells,” Thin Solid Films, vol. 474, no. 1-2, pp. 133–140, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Maruyama, “Copper oxide thin films prepared by chemical vapor deposition from copper dipivaloylmethanate,” Solar Energy Materials and Solar Cells, vol. 56, no. 1, pp. 85–92, 1998. View at Google Scholar · View at Scopus
  14. A. S. Reddy, H.-H. Park, V. S. Reddy et al., “Effect of sputtering power on the physical properties of dc magnetron sputtered copper oxide thin films,” Materials Chemistry and Physics, vol. 110, no. 2-3, pp. 397–401, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. H.-C. Lu, C.-L. Chu, C.-Y. Lai, and Y.-H. Wang, “Property variations of direct-current reactive magnetron sputtered copper oxide thin films deposited at different oxygen partial pressures,” Thin Solid Films, vol. 517, no. 15, pp. 4408–4412, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Process, John Wiley & Sons, New York, NY, USA, 1980.
  17. A. H. Jayatissa, K. Guo, and A. C. Jayasuriya, “Fabrication of cuprous and cupric oxide thin films by heat treatment,” Applied Surface Science, vol. 255, no. 23, pp. 9474–9479, 2009. View at Publisher · View at Google Scholar · View at Scopus