Table of Contents
Journal of Solar Energy
Volume 2013, Article ID 370823, 9 pages
http://dx.doi.org/10.1155/2013/370823
Research Article

Performance Evaluation Criterion at Equal Pumping Power for Enhanced Performance Heat Transfer Surfaces

1JIET School of Engineering & Technology for Girls, Mogra, NH 65, Jodhpur, Rajasthan 342002, India
2Jodhpur National University, Narnadi, Jhanwar Road, Jodhpur, Rajasthan, India
3Technical University Darmstadt, Darmstadt, Germany

Received 27 January 2013; Revised 1 May 2013; Accepted 15 May 2013

Academic Editor: Xin Wang

Copyright © 2013 Rajendra Karwa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Walker and D. Wilkie, “The wider application of roughened heat transfer surfaces as developed for advanced gas-cooled reactors,” in Proceedings of Symposium on High Pressure Gas as a Heat Transfer Medium, London, UK, 1967, paper no. 26.
  2. R. L. Webb and E. R. G. Eckert, “Application of rough surfaces to heat exchanger design,” International Journal of Heat and Mass Transfer, vol. 15, no. 9, pp. 1647–1658, 1972. View at Google Scholar · View at Scopus
  3. A. E. Bergles, A. R. Blumenkrantz, and J. Taborek, “Performance evaluation criteria for enhanced heat transfer surfaces,” in Proceedings of the 5th International Heat Transfer Conference, vol. 2, pp. 239–243, Tokyo, Japan, 1974.
  4. K. W. Boer, “Payback of solar systems,” Solar Energy, vol. 20, pp. 225–232, 1978. View at Google Scholar
  5. K. Altfeld, W. Leiner, and M. Fiebig, “Second law optimization of flat-plate solar air heaters—part I: the concept of net exergy flow and the modeling of solar air heaters,” Solar Energy, vol. 41, no. 2, pp. 127–132, 1988. View at Google Scholar · View at Scopus
  6. A. Cortés and R. Piacentini, “Improvement of the efficiency of a bare solar collector by means of turbulence promoters,” Applied Energy, vol. 36, no. 4, pp. 253–261, 1990. View at Google Scholar · View at Scopus
  7. W. J. White and L. White, “The effect of rib profile on heat transfer and pressure loss properties of transversely ribbed roughened surfaces,” in Augmentation of Heat Transfer, A. E. Bergles and R. L. Webb, Eds., pp. 44–54, ASME, New York, USA, 1970. View at Google Scholar
  8. F. Williams, M. A. M. Pirie, and C. Warburton, “Heat transfer from surfaces roughened by ribs,” in Augmentation of Heat Transfer, A. E. Bergles and R. L. Webb, Eds., pp. 36–43, ASME, New York, USA, 1970. View at Google Scholar
  9. F. Williams and J. Watts, “The development of rough surfaces with improved heat transfer performance and a study of the mechanisms involved,” in Proceedings of 4th International Heat Transfer Conference, vol. 2, pp. 1–11, Paris, France, 1970.
  10. M. J. Lewis, “Optimising the thermohydraulic performance of rough surfaces,” International Journal of Heat and Mass Transfer, vol. 18, no. 11, pp. 1243–1248, 1975. View at Google Scholar · View at Scopus
  11. J. C. Han, J. S. Park, and C. K. Lei, “Heat transfer enhancement in channels with turbulence promoters,” Journal of Engineering for Gas Turbines and Power, vol. 107, pp. 628–635, 1985. View at Google Scholar
  12. J. C. Han and J. S. Park, “Developing heat transfer in rectangular channels with rib turbulators,” International Journal of Heat and Mass Transfer, vol. 31, no. 1, pp. 183–195, 1988. View at Google Scholar · View at Scopus
  13. S. C. Lau, R. T. Kukreja, and R. D. Mcmillin, “Effects of V-shaped rib arrays on turbulent heat transfer and friction of fully developed flow in a square channel,” International Journal of Heat and Mass Transfer, vol. 34, no. 7, pp. 1605–1616, 1991. View at Google Scholar · View at Scopus
  14. S. C. Lau, R. D. McMillin, and J. C. Han, “Turbulent heat transfer and friction in a square channel with discrete rib turbulators,” Journal of Turbomachinery, vol. 113, no. 3, pp. 360–366, 1991. View at Google Scholar · View at Scopus
  15. K. B. Muluwork, S. C. Solanki, and J. S. Saini, “Study of heat transfer and friction in solar air heaters roughened with staggered discrete ribs,” in Proceedings of 4th ISHMT-ASME Heat and Mass Transfer Conference and 15th Heat and Mass Transfer Conference, pp. 391–398, IAT, Pune, India, 2000.
  16. A. E. Momin, J. S. Saini, and S. C. Solanki, “Heat transfer and friction in solar air heater duct with V-shaped rib roughness on absorber plate,” International Journal of Heat and Mass Transfer, vol. 45, no. 16, pp. 3383–3396, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. S. V. Karmare and A. N. Tikekar, “Heat transfer and friction factor correlation for artificially roughened duct with metal grit ribs,” International Journal of Heat and Mass Transfer, vol. 50, no. 21-22, pp. 4342–4351, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. K. R. Aharwal, B. K. Gandhi, and J. S. Saini, “Experimental investigation on heat-transfer enhancement due to a gap in an inclined continuous rib arrangement in a rectangular duct of solar air heater,” Renewable Energy, vol. 33, no. 4, pp. 585–596, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. S. B. Bopche and M. S. Tandale, “Experimental investigations on heat transfer and frictional characteristics of a turbulator roughened solar air heater duct,” International Journal of Heat and Mass Transfer, vol. 52, no. 11-12, pp. 2834–2848, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. M. E. Taslim, T. Li, and D. M. Kercher, “Experimental heat transfer and friction in channels roughened with angled, V-shaped, and discrete ribs on two opposite walls,” Journal of Turbomachinery, vol. 118, no. 1, pp. 20–28, 1996. View at Google Scholar · View at Scopus
  21. S. W. Ahn, “The effects of roughness types on friction factors and heat transfer in roughened rectangular duct,” International Communications in Heat and Mass Transfer, vol. 28, no. 7, pp. 933–942, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. X. Gao and B. Sundén, “Heat transfer and pressure drop measurements in rib-roughened rectangular ducts,” Experimental Thermal and Fluid Science, vol. 24, no. 1-2, pp. 25–34, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Wang and B. Sunden, “Performance comparison of some tube inserts,” International Communication of Heat and Mass Transfer, vol. 29, no. 1, pp. 45–56, 2002. View at Google Scholar
  24. S. W. Moon and S. C. Lau, “Heat transfer between blockages with holes in a rectangular channel,” Journal of Heat Transfer, vol. 125, no. 4, pp. 587–594, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Wang and B. Sunden, “Experimental investigation of local heat transfer in a square duct with various-shaped ribs,” Heat and Mass Transfer, vol. 43, no. 8, pp. 759–766, 2007. View at Publisher · View at Google Scholar
  26. P. Promvonge and C. Thianpong, “Thermal performance assessment of turbulent channel flows over different shaped ribs,” International Communications in Heat and Mass Transfer, vol. 35, no. 10, pp. 1327–1334, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Layek, J. S. Saini, and S. C. Solanki, “Effect of chamfering on heat transfer and friction characteristics of solar air heater having absorber plate roughened with compound turbulators,” Renewable Energy, vol. 34, no. 5, pp. 1292–1298, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. K. R. Aharwal, B. K. Gandhi, and J. S. Saini, “Heat transfer and friction characteristics of solar air heater ducts having integral inclined discrete ribs on absorber plate,” International Journal of Heat and Mass Transfer, vol. 52, no. 25-26, pp. 5970–5977, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Lanjewar, J. L. Bhagoria, and R. M. Sarviya, “Experimental study of augmented heat transfer and friction in solar air heater with different orientations of W-Rib roughness,” Experimental Thermal and Fluid Science, vol. 35, no. 6, pp. 986–995, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Singh, S. Chander, and J. S. Saini, “Investigations on thermo-hydraulic performance due to flow-attack-angle in V-down rib with gap in a rectangular duct of solar air heater,” Applied Energy, vol. 97, pp. 907–912, 2012. View at Publisher · View at Google Scholar
  31. K. Ko and N. K. Anand, “Use of porous baffles to enhance heat transfer in a rectangular channel,” International Journal of Heat and Mass Transfer, vol. 46, no. 22, pp. 4191–4199, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. O. N. Sara, T. Pekdemir, S. Yapici, and M. Yilmaz, “Heat-transfer enhancement in a channel flow with perforated rectangular blocks,” International Journal of Heat and Fluid Flow, vol. 22, no. 5, pp. 509–518, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. D. L. Gee and R. L. Webb, “Forced convection heat transfer in helically rib-roughened tubes,” International Journal of Heat and Mass Transfer, vol. 23, no. 8, pp. 1127–1136, 1980. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Sethumadhavan and M. Raja Rao, “Turbulent flow heat transfer and fluid friction in helical-wire-coil-inserted tubes,” International Journal of Heat and Mass Transfer, vol. 26, no. 12, pp. 1833–1845, 1983. View at Google Scholar · View at Scopus
  35. R. Sethumadhavan and M. Raja Rao, “Turbulent flow friction and heat transfer characteristics of single- and multistart spirally enhanced tubes,” Journal of Heat Transfer, vol. 108, no. 1, pp. 55–61, 1986. View at Google Scholar · View at Scopus
  36. T.-M. Liou and J.-J. Hwang, “Effect of ridge shapes on turbulent heat transfer and friction in a rectangular channel,” International Journal of Heat and Mass Transfer, vol. 36, no. 4, pp. 931–940, 1993. View at Google Scholar · View at Scopus
  37. J.-J. Hwang and T.-M. Liou, “Augmented heat transfer in a rectangular channel with permeable ribs mounted on the wall,” Journal of Heat Transfer, vol. 116, no. 4, pp. 912–920, 1994. View at Google Scholar · View at Scopus
  38. T.-M. Liou, W. B. Wang, and Y. J. Chang, “Holographic interferometry study of spatially periodic heat transfer in a channel with ribs detached from one wall,” Journal of Heat Transfer, vol. 117, no. 1, pp. 32–39, 1995. View at Google Scholar · View at Scopus
  39. J.-J. Hwang, T. Y. Lia, and T.-M. Liou, “Effect of fence thickness on pressure drop and heat transfer in a perforated-fenced channel,” International Journal of Heat and Mass Transfer, vol. 41, no. 4-5, pp. 811–816, 1998. View at Google Scholar · View at Scopus
  40. R. Karwa, “Experimental studies of augmented heat transfer and friction in asymmetrically heated rectabgular ducts with ribs on the heated wall in transverse, inclined, v-continous and v-discrete pattern,” International Communications in Heat and Mass Transfer, vol. 30, no. 2, pp. 241–250, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Ichimiya, “Effects of several roughness elements on an insulated wall for heat transfer from the opposite smooth heated surface in a parallel plate duct,” Journal of Heat Transfer, vol. 109, no. 1, pp. 68–73, 1987. View at Google Scholar · View at Scopus
  42. R. Karwa, R. D. Bairwa, B. P. Jain, and N. Karwa, “Experimental study of the effects of rib angle and discretization on heat transfer and friction in an asymmetrically heated rectangular duct,” Journal of Enhanced Heat Transfer, vol. 12, no. 4, pp. 343–355, 2005. View at Publisher · View at Google Scholar · View at Scopus