Table of Contents Author Guidelines Submit a Manuscript
Journal of Solar Energy
Volume 2014, Article ID 426785, 7 pages
http://dx.doi.org/10.1155/2014/426785
Research Article

High-Efficiency Glass and Printable Flexible Dye-Sensitized Solar Cells with Water-Based Electrolytes

1School of Electronic Engineering, University of Bangor, Dean Street, Gwynedd, Bangor LL57 1UT, UK
2G24 Innovations Limited, Wentloog Environmental Centre, Cardiff CF3 2GH, UK

Received 6 May 2014; Accepted 28 July 2014; Published 13 August 2014

Academic Editor: M. S. A. Abdel-Mottaleb

Copyright © 2014 Omar Moudam and Silvia Villarroya-Lidon. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Hagfeldt and M. Gratzel, “Molecular photovoltaics,” Accounts of Chemical Research, vol. 33, no. 5, pp. 269–277, 2000. View at Publisher · View at Google Scholar
  2. M. K. Nazeeruddin, A. Kay, I. Rodicio et al., “Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes,” Journal of the American Chemical Society, vol. 115, no. 14, pp. 6382–6390, 1993. View at Publisher · View at Google Scholar
  3. M. Gratzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 164, no. 1–3, pp. 3–14, 2004. View at Publisher · View at Google Scholar
  4. A. Yella, H. Lee, H. N. Tsao et al., “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science, vol. 334, no. 6056, pp. 629–634, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. B. O'Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, pp. 737–740, 1991. View at Publisher · View at Google Scholar
  6. Y. Liu, A. Hagfeldt, X. Xiao, and S. Lindquist, “Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell,” Solar Energy Materials and Solar Cells, vol. 55, no. 3, pp. 267–281, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Macht, M. Turrión, A. Barkschat, P. Salvador, K. Ellmer, and H. Tributsch, “Patterns of efficiency and degradation in dye sensitization solar cells measured with imaging techniques,” Solar Energy Materials and Solar Cells, vol. 73, no. 2, pp. 163–173, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. Y.-S. Jung, B. Yoo, M. K. Lim, S. Y. Lee, and K.-J. Kim, “Effect of Triton X-100 in water-added electrolytes on the performance of dye-sensitized solar cells,” Electrochimica Acta, vol. 54, no. 26, pp. 6286–6291, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Law, S. C. Pathirana, X. Li et al., “Water-based electrolytes for dye-sensitized solar cells,” Advanced Materials, vol. 22, no. 40, pp. 4505–4509, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. T. N. Murakami, H. Saito, S. Uegusa, N. Kawashima, and T. Miyasaka, “Water-based dye-sensitized solar cells: interfacial activation of TiO2 mesopores in contact with aqueous electrolyte for efficiency development,” Chemistry Letters, vol. 32, no. 12, pp. 1154–1155, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Law, O. Moudam, S. Villarroya-Lidon, and B. O'Regan, “Managing wetting behavior and collection efficiency in photoelectrochemical devices based on water electrolytes; improvement in efficiency of water/iodide dye sensitised cells to 4%,” Journal of Materials Chemistry, vol. 22, no. 44, pp. 23387–23394, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. S. S. Soni, K. B. Fadadu, R. L. Vekariya et al., “Effect of self-assembly on triiodide diffusion in water based polymer gel electrolytes: an application in dye solar cell,” Journal of Colloid and Interface Science, vol. 425, pp. 110–117, 2014. View at Publisher · View at Google Scholar
  13. S. J. Park, K. Yoo, J.-Y. Kim et al., “Water-based thixotropic polymer gel electrolyte for dye-sensitized solar cells,” ACS Nano, vol. 7, no. 5, pp. 4050–4056, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Kambe, S. Nakade, T. Kitamura, Y. Wada, and S. Yanagida, “Influence of the electrolytes on electron transport in mesoporous TiO2-electrolyte systems,” Journal of Physical Chemistry B, vol. 106, no. 11, pp. 2967–2972, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. W. Kubo, S. Kambe, S. Nakade et al., “Photocurrent-determining processes in quasi-solid-state dye-sensitized solar cells using ionic gel electrolytes,” Journal of Physical Chemistry B, vol. 107, no. 18, pp. 4374–4381, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Mikoshiba, S. Murai, H. Sumino, T. Kado, D. Kosugi, and S. Hayase, “Ionic liquid type dye-sensitized solar cells: increases in photovoltaic performances by adding a small amount of water,” Current Applied Physics, vol. 5, no. 2, pp. 152–158, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. L. I. Katzin and E. Gebert, “The iodide-iodine-triiodide equilibrium and ion activity coefficient ratios,” Journal of the American Chemical Society, vol. 77, no. 22, pp. 5814–5819, 1955. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Hahlin, E. M. J. Johansson, R. Schölin, H. Siegbahn, and H. Rensmo, “Influence of water on the electronic and molecular surface structures of ru-dyes at nanostructured TiO2,” Journal of Physical Chemistry C, vol. 115, no. 24, pp. 11996–12004, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Rothenberger, D. Fitzmaurice, and M. Grätzel, “Spectroscopy of conduction band electrons in transparent metal oxide semiconductor films: optical determination of the flatband potential of colloidal titanium dioxide films,” The Journal of Physical Chemistry, vol. 96, no. 14, pp. 5983–5986, 1992. View at Google Scholar
  20. B. Enright, G. Redmond, and D. Fitzmaurice, “Spectroscopic determination of flatband potentials for polycrystalline TiO2 electrodes in mixed solvent systems,” Journal of Physical Chemistry, vol. 98, no. 24, pp. 6195–6200, 1994. View at Publisher · View at Google Scholar · View at Scopus
  21. M. K. Wang, S. J. Moon, D. F. Zhou et al., “Enhanced-light-harvesting amphiphilic ruthenium dye for efficient solid-state dye-sensitized solar cells,” Advanced Functional Materials, vol. 20, no. 11, pp. 1821–1826, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. J. H. Yum, S. J. Moon, R. Humphry-Baker et al., “Effect of coadsorbent on the photovoltaic performance of squaraine sensitized nanocrystalline solar cells,” Nanotechnology, vol. 19, no. 42, Article ID 424005, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. P. H. von Hippel and K. Wong, “Neutral salts: the generality of their effects on the stability of macromolecular conformations,” Science, vol. 145, no. 3632, pp. 577–580, 1964. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Y. Huang, G. Schlichthrol, A. J. Nozik, M. Gratzel, and A. J. Frank, “Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells,” The Journal of Physical Chemistry B, vol. 101, no. 14, pp. 2576–2582, 1997. View at Google Scholar
  25. C. Zhang, Y. Huang, Z. Huo, S. Chen, and S. Dai, “Photoelectrochemical effects of guanidinium thiocyanate on dye-sensitized solar cell performance and stability,” Journal of Physical Chemistry C, vol. 113, no. 52, pp. 21779–21783, 2009. View at Publisher · View at Google Scholar · View at Scopus