Table of Contents
Journal of Soft Matter
Volume 2013 (2013), Article ID 323868, 8 pages
http://dx.doi.org/10.1155/2013/323868
Research Article

Electrical Conduction Mechanism in Solid Polymer Electrolytes: New Concepts to Arrhenius Equation

1Department of Physics, Faculty of Science and Science Education, University of Sulaimani, Kurdistan Regional Government, Sulaimani, Iraq
2Centre for Ionics University of Malaya (CIUM), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia

Received 18 April 2013; Revised 4 July 2013; Accepted 5 July 2013

Academic Editor: Luisa Torsi

Copyright © 2013 Shujahadeen B. Aziz and Zul Hazrin Z. Abidin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. K. Thakur and S. A. Hashmi, “Polymer matrix-filler interaction mechanism for modified ion transport and glass transition temperature in the polymer electrolyte composites,” Solid State Ionics, vol. 181, no. 27-28, pp. 1270–1278, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. R. N. Mason, L. Hu, D. T. Glatzhofer, and R. Frech, “Infrared spectroscopic and conductivity studies of poly(N-methylpropylenimine)/lithium triflate electrolytes,” Solid State Ionics, vol. 180, no. 40, pp. 1626–1632, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. R. C. Agrawal, Y. K. Mahipal, and R. Ashrafi, “Materials and ion transport property studies on hot-press casted solid polymer electrolyte membranes: [(1 - x) PEO: x KIO3],” Solid State Ionics, vol. 192, no. 1, pp. 6–8, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. H. M. J. C. Pitawala, M. A. K. L. Dissanayake, and V. A. Seneviratne, “Combined effect of Al2O3 nano-fillers and EC plasticizer on ionic conductivity enhancement in the solid polymer electrolyte (PEO)9LiTf,” Solid State Ionics, vol. 178, no. 13-14, pp. 885–888, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. P.-L. Kuo, W.-J. Liang, and T.-Y. Chen, “Solid polymer electrolytes V: microstructure and ionic conductivity of epoxide-crosslinked polyether networks doped with LiClO4,” Polymer, vol. 44, no. 10, pp. 2957–2964, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Jayakumar, M. Prabaharan, S. V. Nair, and H. Tamura, “Novel chitin and chitosan nanofibers in biomedical applications,” Biotechnology Advances, vol. 28, no. 1, pp. 142–150, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Bai, F. Cao, X. Lan et al., “Chitosan gel beads immobilized Cu (II) for selective adsorption of amino acids,” Journal of biochemical and biophysical methods, vol. 70, no. 6, pp. 903–908, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Lu, L. Kong, B. Sheng, G. Wang, Y. Gong, and X. Zhang, “Degradation of covalently cross-linked carboxymethyl chitosan and its potential application for peripheral nerve regeneration,” European Polymer Journal, vol. 43, no. 9, pp. 3807–3818, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. L. S. Ng and A. A. Mohamad, “Protonic battery based on a plasticized chitosan-NH4NO3 solid polymer electrolyte,” Journal of Power Sources, vol. 163, no. 1, pp. 382–385, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. A. S. A. Khiar, R. Puteh, and A. K. Arof, “Conductivity studies of a chitosan-based polymer electrolyte,” Physica B, vol. 373, no. 1, pp. 23–27, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. Osman, Z. A. Ibrahim, and A. K. Arof, “Conductivity enhancement due to ion dissociation in plasticized chitosan based polymer electrolytes,” Carbohydrate Polymers, vol. 44, no. 2, pp. 167–173, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. M. H. Buraidah, L. P. Teo, S. R. Majid, and A. K. Arof, “Ionic conductivity by correlated barrier hopping in NH4I doped chitosan solid electrolyte,” Physica B, vol. 404, no. 8–11, pp. 1373–1379, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. M. F. Z. Kadir, S. R. Majid, and A. K. Arof, “Plasticized chitosan-PVA blend polymer electrolyte based proton battery,” Electrochimica Acta, vol. 55, no. 4, pp. 1475–1482, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. R. H. Y. Subban, A. K. Arof, and S. Radhakrishna, “Polymer batteries with chitosan electrolyte mixed with sodium perchlorate,” Materials Science and Engineering B, vol. 38, no. 1-2, pp. 156–160, 1996. View at Google Scholar · View at Scopus
  15. N. M. Morni, N. S. Mohamed, and A. K. Arof, “Silver nitrate doped chitosan acetate films and electrochemical cell performance,” Materials Science and Engineering B, vol. 45, no. 1–3, pp. 140–146, 1997. View at Google Scholar · View at Scopus
  16. S. B. Aziz, Z. H. Z. Abidin, and A. K. Arof, “Effect of silver nanoparticles on the DC conductivity in chitosansilver triflate polymer electrolyte,” Physica B, vol. 405, no. 21, pp. 4429–4433, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. S. L. Agrawal, M. Singh, M. Tripathi, M. M. Dwivedi, and K. Pandey, “Dielectric relaxation studies on [PEO-SiO2]:NH4SCN nanocomposite polymer electrolyte films,” Journal of Materials Science, vol. 44, no. 22, pp. 6060–6068, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. D. K. Pradhan, R. N. P. Choudhary, and B. K. Samantaray, “Studies of dielectric relaxation and AC conductivity behavior of plasticized polymer nanocomposite electrolytes,” International Journal of Electrochemical Science, vol. 3, pp. 597–608, 2008. View at Google Scholar
  19. M. Okutan and E. Şentürk, “β dielectric relaxation mode in side-chain liquid crystalline polymer film,” Journal of Non-Crystalline Solids, vol. 357, no. 14, pp. 1526–1530, 2008. View at Publisher · View at Google Scholar
  20. M. Petrowsky and R. Frech, “Temperature dependence of ion transport: the compensated arrhenius equation,” Journal of Physical Chemistry B, vol. 113, no. 17, pp. 5996–6000, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Petrowsky and R. Frech, “Salt concentration dependence of the compensated Arrhenius equation for alcohol-based electrolytes,” Electrochimica Acta, vol. 55, no. 4, pp. 1285–1288, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Göktepe, S. Ü. Çelik, and A. Bozkurt, “Preparation and the proton conductivity of chitosan/poly(vinyl phosphonic acid) complex polymer electrolytes,” Journal of Non-Crystalline Solids, vol. 354, no. 30, pp. 3637–3642, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Wan, K. A. M. Creber, B. Peppley, and V. T. Bui, “Chitosan-based solid electrolyte composite membranes. I. Preparation and characterization,” Journal of Membrane Science, vol. 280, no. 1-2, pp. 666–674, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. S. A. Hashmi and S. Chandra, “Experimental investigations on a sodium-ion-conducting polymer electrolyte based on poly(ethylene oxide) complexed with NaPF6,” Materials Science and Engineering B, vol. 34, no. 1, pp. 18–26, 1995. View at Publisher · View at Google Scholar
  25. R. A. Sanders, A. G. Snow, R. Frech, and D. T. Glatzhofer, “A spectroscopic and conductivity comparison study of linear poly(N-methylethylenimine) with lithium triflate and sodium triflate,” Electrochimica Acta, vol. 48, no. 14–16, pp. 2247–2253, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Ramesh, C.-W. Liew, and K. Ramesh, “Evaluation and investigation on the effect of ionic liquid onto PMMA-PVC gel polymer blend electrolytes,” Journal of Non-Crystalline Solids, vol. 357, no. 10, pp. 2132–2138, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. K. K. Kumar, M. Ravi, Y. Pavani, S. Bhavani, A. K. Sharma, and V. V. R. N. Rao, “Investigations on the effect of complexation of NaF salt with polymer blend (PEO/PVP) electrolytes on ionic conductivity and optical energy band gaps,” Physica B, vol. 406, no. 9, pp. 1706–1712, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Wei, W. Sun, W. Qian, Y. Ye, and X. Ma, “The synthesis of chitosan-based silver nanoparticles and their antibacterial activity,” Carbohydrate Research, vol. 344, no. 17, pp. 2375–2382, 2009. View at Publisher · View at Google Scholar
  29. M. H. Buraidah and A. K. Arof, “Characterization of chitosan/PVA blended electrolyte doped with NH4I,” Journal of Non-Crystalline Solids, vol. 357, no. 16-17, pp. 3261–3266, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. B. C. Ng, H. Y. Wong, K. W. Chew, and Z. Osman, “Development and characterization of Poly-ε-caprolactone-based polymer electrolyte for lithium rechargeable battery,” International Journal of Electrochemical Science, vol. 6, no. 9, pp. 4355–4364, 2011. View at Google Scholar · View at Scopus
  31. S. Selvasekarapandian, R. Baskaran, and M. Hema, “Complex AC impedance, transference number and vibrational spectroscopy studies of proton conducting PVAc-NH4SCN polymer electrolytes,” Physica B, vol. 357, no. 3-4, pp. 412–419, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Malathi, M. Kumaravadivel, G. M. Brahmanandhan, M. Hema, R. Baskaran, and S. Selvasekarapandian, “Structural, thermal and electrical properties of PVA-LiCF3SO3 polymer electrolyte,” Journal of Non-Crystalline Solids, vol. 356, no. 43, pp. 2277–2281, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. W. Chen-Yang, Y. T. Chen, H. C. Chen, W. T. Lin, and C. H. Tsai, “Effect of the addition of hydrophobic clay on the electrochemical property of polyacrylonitrile/LiClO4 polymer electrolytes for lithium battery,” Polymer, vol. 50, no. 13, pp. 2856–2862, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Awadhia and S. L. Agrawal, “Structural, thermal and electrical characterizations of PVA:DMSO:NH4SCN gel electrolytes,” Solid State Ionics, vol. 178, no. 13-14, pp. 951–958, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. C. V. S. Reddy, X. Han, Q. Zhu, L. Mai, and W. Chen, “Dielectric spectroscopy studies on (PVP + PVA) polyblend film,” Microelectronic Engineering, vol. 83, no. 2, pp. 281–285, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Y. Kim and S. H. Kim, “Ionic conduction behavior of network polymer electrolytes based on phosphate and polyether copolymers,” Solid State Ionics, vol. 124, no. 1, pp. 91–99, 1999. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Awadhia, S. K. Patel, and S. L. Agrawal, “Dielectric investigations in PVA based gel electrolytes,” Progress in Crystal Growth and Characterization of Materials, vol. 52, no. 1-2, pp. 61–68, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Karmakar and A. Ghosh, “Dielectric permittivity and electric modulus of polyethylene oxide (PEO)-LiClO4 composite electrolytes,” Current Applied Physics, vol. 12, no. 2, pp. 539–543, 2012. View at Publisher · View at Google Scholar · View at Scopus