Journal of Spectroscopy

Journal of Spectroscopy / 2003 / Article

Open Access

Volume 17 |Article ID 378434 | https://doi.org/10.1155/2003/378434

Oliver Ohlenschläger, Jens Wöhnert, Ramadurai Ramachandran, Christian Sich, Matthias Görlach, "Nuclear magnetic resonance studies of ribonucleic acids", Journal of Spectroscopy, vol. 17, Article ID 378434, 11 pages, 2003. https://doi.org/10.1155/2003/378434

Nuclear magnetic resonance studies of ribonucleic acids

Abstract

Ribonucleic acids (RNA) and RNA−protein complexes are essential components of biological information transfer, catalytic processes and are associated with regulatory functions. This broad range of biological functions is paralleled at the conformational level by a large number of non-canonical structural elements or sequences with non-standard backbone conformations, e.g., loops, bulges, pseudo-knots and complex tertiary folds. NMR spectroscopy has evolved to a powerful tool for the determination of ribonucleic acid structures of up to 20 kDa. Uniform or selective stable isotope labelling aids in solving assignment problems arising from the inherently limited chemical shift dispersion and overlap of resonances for larger nucleotide sequences. Recent developments of multi-dimensional heteronuclear NMR pulse sequences allow e.g., to directly observe the hydrogen bonding pattern of canonical Watson−Crick base pairs as well as of unusual types of base pairs, thereby opening up a fast access to secondary structure screening of RNA. Detailed conformational descriptions are obtained using conventional NOE and J coupling-derived data, nowadays supplemented by information from residual dipolar couplings. The latter method also provides a new means for the probing of dynamical features of ribonucleic acids.

Copyright © 2003 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Order printed copiesOrder
Views132
Downloads587
Citations

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.