Journal of Spectroscopy

Journal of Spectroscopy / 2004 / Article
Special Issue

Second International Conference on Biomedical Spectroscopy: From the Bench to the Clinic, London, UK, 5–8 July, 2003

View this Special Issue

Open Access

Volume 18 |Article ID 348028 |

M. Timonen, A. Kangasmäki, S. Savolainen, S. Heikkinen, "1H MRS phantom studies of BNCT 10B‒carrier, BPA–F using STEAM and PRESS MRS sequences: Detection limit and quantification", Journal of Spectroscopy, vol. 18, Article ID 348028, 10 pages, 2004.

1H MRS phantom studies of BNCT 10B‒carrier, BPA–F using STEAM and PRESS MRS sequences: Detection limit and quantification


The quantification of boron neutron capture therapy (BNCT) 10B‒carrier, L‒p‒boronophenylalanine‒fructose complex (BPA–F) was studied with phantoms using 1H magnetic resonance spectroscopy sequences PRESS and STEAM at 1.5 and 3.0 T. The results show that typical attainable short echo times of clinical MRS sequences combined with long repetition time result in clinically acceptable quantification accuracy. However, the concentration ratios, which are essential for the treatment planning, can still be reliably measured by using small repetition times. Detection limits of BPA in aqueous phantoms at 1.5 and 3.0 T were evaluated using clinically acceptable measurement time of ~10 min, two typical voxel sizes (153 and 203 mm3) and PRESS and STEAM sequences. The detection limits of BPA in phantom conditions were 0.7 (3.0 T) and 1.4 mM (1.5 T) for PRESS sequence with 203 mm3 voxel.

Copyright © 2004 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

More related articles

 PDF Download Citation Citation
 Order printed copiesOrder

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.