Journal of Spectroscopy

Journal of Spectroscopy / 2004 / Article

Open Access

Volume 18 |Article ID 763030 | https://doi.org/10.1155/2004/763030

Joseph H. Banoub, Judith Miller-Banoub, George V. Sheppard, Howard J. Hodder, "Electrospray tandem mass spectrometric measurements of organotin compounds", Journal of Spectroscopy, vol. 18, Article ID 763030, 18 pages, 2004. https://doi.org/10.1155/2004/763030

Electrospray tandem mass spectrometric measurements of organotin compounds

Abstract

Electrospray mass spectrometry of a series of organotin compounds in solutions of methanol are reported. Low energy collision‒induced dissociation MS/MS analysis of diagnostic precursor ions confirmed the characteristic fingerprint patterns obtained in the conventional electrospray spectra and proved to be a specific and very sensitive method for quantification of the (R3Sn)2O and the series of RnSnX4–n compounds in environmental matrices. Concentrations of butyltin compounds (TBTX, DBTX2 and MBTX3) in sediment reference materials PACS-1 and PACS-2 and butyltin and phenyltin compounds (TBTX, DBTX2, MBTX3, TPTX, DPTX2 and DPTX3) in Quasimeme II biota reference material (QSP001BT) were determined. The organotin compounds were extracted from the reference materials with 1-butanol followed by dilution with methanol containing 1 mM ammonium acetate. The extracts were introduced directly into the electrospray source by a continuous flow of MeOH : H2O (60 :40). Quantitation of TBTX, DBTX2, TPTX, DPTX2 and DPTX3 was achieved by low energy CID tandem mass spectrometry using the Multiple Reaction Monitoring (MRM) analysis with the appropriate MS/MS transitions (positive ion electrospray ionization). Quantitation of MBTX3 was achieved using a negative ion electrospray CID tandem mass spectrometry method. For all samples quantitation was achieved by use of the method of standard addition, relative extraction recoveries were determined spiking with internal standards of mono‒, di‒ and triorganotin compounds separately to different samples.

Copyright © 2004 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Order printed copiesOrder
Views93
Downloads2140
Citations

Related articles

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.