Journal of Spectroscopy

Journal of Spectroscopy / 2010 / Article
Special Issue

From Molecule to Tissue: XIII European Conference on the Spectroscopy of Biological Molecules, Palermo, Italy, August 28–September 2, 2009, Part 2 of 2

View this Special Issue

Open Access

Volume 24 |Article ID 581520 |

Petr Praus, Eva Kocišová, Peter Mojzeš, Josef Štepánek, Franck Sureau, Pierre-Yves Turpin, "Frequency domain fluorescence microspectrometry: Application to cellular uptake and drug distribution", Journal of Spectroscopy, vol. 24, Article ID 581520, 5 pages, 2010.

Frequency domain fluorescence microspectrometry: Application to cellular uptake and drug distribution


Time-resolved confocal microspectrofluorometry and fluorescence microimaging were used to monitor how the model antisense oligonucleotide is transported into 3T3 living cells and distributed inside them. Phosphorothioate analog of 15-mer oligothymidylate labeled by ATTO 425 was complexed with Zn(II) 5,10,15,20-tetrakis(4-N-methylpyridyl) porphyrin as an uptake-mediating agent. Homodyne phase-resolved technique based on a high frequency analog modulation of both exciting diode laser and detector image intensifier was used for time-resolved measurements. Decay-time data obtained within a broad range spectral region have provided unique information about the fate of both fluorophores inside the cell.

Copyright © 2010 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

More related articles

 PDF Download Citation Citation
 Order printed copiesOrder

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.