Journal of Spectroscopy

Journal of Spectroscopy / 2010 / Article
Special Issue

From Molecule to Tissue: XIII European Conference on the Spectroscopy of Biological Molecules, Palermo, Italy, August 28–September 2, 2009, Part 2 of 2

View this Special Issue

Open Access

Volume 24 |Article ID 737980 | 9 pages | https://doi.org/10.3233/SPE-2010-0460

From discrete multi-exponential model to lifetime distribution model and power law fluorescence decay function

Abstract

Experimental and theoretical studies of the fluorescence intensity decays in biomolecular systems showed that under constraints of typical experiment fluorescence lifetime distribution is given by gamma function, which led to a power-like decay function. The latter well fits complex (heterogeneous) as well as simple mono-exponential decays. Fluorescence decay kinetics is described by mean value of lifetime distribution characterizing the average rate of the excited-state decay, and one new parameter of heterogeneity (1 < q < 3/2) describing the relative variance of distribution, and objectively reflecting physical heterogeneity of the system. In the classical limit, when q → 1, the gamma distribution becomes the Dirac delta function, and decay function converges from power-like form to the single-exponential form. Numerous examples illustrate successful applications of this model to rational analysis of complex fluorescence decays of biomacromolecules, e.g., complexes of E. coli purine nucleoside phosphorylase (PNP-I) with formycin A (FA, inhibitor) and orthophosphate (Pi, cosubstrate), which led to identification of the mechanism of deactivation of excited state and the N(2)H tautomeric form of FA selectively bound by PNP-I. The latter is of great importance for the studies of the mechanism of protein (enzyme) action as well as for more rational drug design.

Copyright © 2010 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

576 Views | 1511 Downloads | 6 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.