Journal of Spectroscopy

Journal of Spectroscopy / 2012 / Article

Open Access

Volume 27 |Article ID 546146 |

Renata Swislocka, Malgorzata Kowczyk-Sadowy, Monika Kalinowska, Wlodzimierz Lewandowski, "Spectroscopic (FT-IR, FT-Raman, 1H and 13C NMR) and theoretical studies of p-coumaric acid and alkali metal p-coumarates", Journal of Spectroscopy, vol. 27, Article ID 546146, 14 pages, 2012.

Spectroscopic (FT-IR, FT-Raman, 1H and 13C NMR) and theoretical studies of p-coumaric acid and alkali metal p-coumarates


The evaluation of the electronic charge distribution in metal complexes enables more precise interpretation of mechanism by which particular metal ions affect biochemical properties of ligands [J. Inorg. Biochem. 99 (2005), 1407–1423, J. Mol. Struct. 919 (2009), 284–289]. In this paper we investigated the influence of alkali metal cations (lithium, sodium, potassium, rubidium and cesium) on the electronic structure of p-coumaric acid (p-CA). It allowed to observe the systematic changes in the spectra of investigated complexes depending on the position of the element in the periodic table. p-Coumaric acid is a derivative of cinnamic acid that occurs in several plant species. Li, Na, K, Rb and Cs p-coumarates were synthesized and the experimental and theoretical FT-IR, FT-Raman, 1H and 13C NMR spectra of p-coumaric acid and its salts were registered and analyzed. The structures, atomic charges, infrared and NMR spectra of p-coumaric acid and Li, Na, K salts were calculated by B3LYP/6-311++G** method.

Copyright © 2012 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

More related articles

 PDF Download Citation Citation
 Order printed copiesOrder