Journal of Spectroscopy

Journal of Spectroscopy / 2012 / Article

Open Access

Volume 27 |Article ID 741053 | https://doi.org/10.1155/2012/741053

Yun Zhang, Xili He, Zhenghua Song, "Determination of Nanogram Quantities of Emodin in Pharmaceutical Preparations and Biofluids by Luminol-Myoglobin Chemiluminescence System", Journal of Spectroscopy, vol. 27, Article ID 741053, 9 pages, 2012. https://doi.org/10.1155/2012/741053

Determination of Nanogram Quantities of Emodin in Pharmaceutical Preparations and Biofluids by Luminol-Myoglobin Chemiluminescence System

Published28 May 2012

Abstract

Based on the quenching effect of emodin on the luminol-myoglobin (Mb) reaction, a sensitive method for the determination of nanogram level emodin by flow injection chemiluminescence (FI-CL) is presented for the first time. It was found that the CL intensity from luminol-Mb system could be inhibited in the presence of emodin, and the decrement of CL intensity was linearly proportional to the logarithm of emodin concentration in the range of 0.5– 3 0 0 n g m L 1 (R = 0.9956) with the detection limit of 0 . 2 n g m L 1 (3σ). At a flow rate of 2 . 0 m L m i n 1 , a complete determination of emodin, including sampling and washing, could be accomplished in 0.5 min with the relative standard deviations (RSDs) of less than 3.5% (n = 5). The proposed method was successfully applied to the determination of emodin in pharmaceutical preparations and human serum samples. The possible CL mechanism of luminol-Mb-emodin reaction was explained.

1. Introduction

Natural ingredients that have been used traditionally to treat many diseases for hundreds of years are considered as a good choice for carcinoma therapy [1]. Emodin (1, 3, 8-trihydroxy-6-methylanthraquinone, Figure 1, MW = 270), one of the most commonly used species, comes from dry roots of rhubarb which is a group of plants that belongs to the genus rheum in the polygonaceae family. Emodin has been extensively researched for its traditional pharmacological effects, mainly in the treatment of constipation and menoxenia, skin burn, gallstone, hepatitis, inflammation, and osteomyelitis [2, 3]. Recently, a number of studies have placed emodin back into the attention focused on its anticancer activities against several types of cancer cells and virus, for instance, inhibiting ATP-induced macrophage death [4], mediating cytotoxicity in human nonsmall cell lung cancer cells [5], inducing resensitization of lung cancer cells to anoikis [6], against β-amyloid-induced neurotoxicity, herpes simplex virus, human chronic myelocytic leukemia K562 cell lines [79], and inhibiting the growth of hepatoma cells [10].

The different methods for the determination of emodin have been reported, including high-performance liquid chromatography (HPLC) [11, 12], capillary electrophoresis (CE) [13], ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) [14], electrochemistry (EC) [15], UV-Vis spectrophotometry [16], and electrochemiluminescence (ECL) [17, 18]. However, there was no report on the determination of emodin using flow injection chemiluminescence (FI-CL) up to now.

It has been reported that Mb, which contains a single iron protoporphyrin or heme moiety in the ferric state Mb (FeIII), can react with luminol yielding CL emission [19, 20]. In this paper, it was found that the CL intensity from luminol-Mb system could be inhibited in the presence of emodin, and the decrement of CL intensity was linearly proportional to the logarithm of emodin concentration in the range of 0.5–300 ng·mL−1 ( 𝑅 = 0.9956) with the relative standard deviations (RSDs) of less than 3.5% ( 𝑛 = 7 ). The simple and rapid method was successfully applied to the determination of emodin in pharmaceutical preparations and human serum samples.

2. Experimental Section

2.1. Apparatus and Reagents

The experiment instrument was flow injection CL analyzer (model IFFL-DD, Xi’an Remax Electronic Science-Tech. Co. Ltd); PTFE tubing (1.0 mm i.d.) was used as connection material in the flow system; luminol was used as supplied to prepare a 2.5 × 10−2 mol·L−1 stock standard solution by dissolving 0.44 g luminol (Fluka, Biochemika) in 0.1 mol·L−1 sodium hydroxide in a 100 mL calibrated flask; horse heart Mb (Sigma) was purchased from local market and used as received without further purification. All reagents were of analytical purity grade. Doubly distilled water purified in a Milli-Q system (Millipore, Bedford, MA) was used throughout.

2.2. Procedures

The flow injection system used in this work was shown in Figure 2. A peristaltic pump was used to pump each of all flow streams at a flow rate of 2.0 mL·min−1. The carrier used in flow injection system was water. Luminol was used as supplied to prepare a 2.5 × 10−5 mol·L−1 solution, and NaOH solution was 2.5 × 10−2 mol·L−1. A six-way valve with loop of 100 μL was used for luminol after a stable baseline was recorded, the CL signal produced in the CL emission cell when mixed with Mb. The mixed solution was delivered into the CL cell, producing CL emission, and detected by the photomultiplier tube (PMT). The concentration of emodin could be quantified on the basis of the decrement of CL intensity, Δ 𝐼 = 𝐼 𝑜 𝐼 𝑠 , where 𝐼 𝑠 and 𝐼 𝑜 were CL signals in the presence and in the absence of emodin, respectively.

2.3. Sample Preparation

Five tablets of SANHUANG PIAN (produced by Shanxi Yabao Pharmaceutical Group Industry. Co. Ltd.) were weighed and ground to fine powder using a pestle and mortar and then homogenized; a sample equivalent to approximately 425 ± 10 mg of emodin was weighed accurately and dissolved in some ethanol and then diluted with doubly deionized water in a calibrated flask and ultrasound for 10 minutes. The solution was filtered by an ordinary filter paper, and suitable filtrate aliquots from this solution were diluted to an emodin concentration within the calibration range.

3. Results and Discussion

3.1. The Relative CL Intensity-Time Profile

The behavior of the CL reaction, carried out in the absence and presence of emodin, was tested using 5.0 × 10−8 mol·L−1 Mb and 2.5 × 10−5 mol·L−1 luminol in 2.5 × 10−2 mol·L−1 NaOH solution. It can be seen from Figure 3 that CL intensity reaches the maximum at 8 s after sampling and vanishes within 25 s; the CL evidently decreases with the increasing concentration of emodin.

3.2. Effect of Luminol, Mb, and NaOH Concentration

Under different concentrations of luminol from 1.0 × 10−6 to 1.0 × 10−4 mol·L−1 and Mb solutions from 1.0 × 10−8 to 1.0 × 10−6 mol·L−1, the CL intensity was examined. It was found that the CL intensity arrived at the maximum with 2.5 × 10−5 mol·L−1 luminol and 5.0 × 10−8 mol·L−1 Mb. Thus the luminol solution of 2.5 × 10−5 mol·L−1 and Mb solution of 5.0 × 10−8 mol·L−1 were used in subsequent experiments.

Owing to the nature of the luminol reaction, which is more favorable under alkaline conditions, NaOH was introduced into the luminol solution to improve the sensitivity of the system. A series of NaOH solutions with different concentrations from 0.01 to 0.1 mol·L−1 were tested, respectively. The plot of CL intensity versus NaOH concentration reached the peak at 2.5 × 10−2 mol·L−1, and this concentration was employed in the subsequent experiments.

3.3. Effect of Flow Rate and the Length of Mixing Tubing

It was found that the CL intensity increased with the increasing flow rate. As a compromise between good precision and lower reagent consumption, 2.0 mL·min−1 of flow rate on each line was recommended. It was found that 10 cm mixing tube afforded the best results with the good sensitivity and reproducibility. Accordingly, 10 cm was selected as the optimum length of mixing tubing.

3.4. Performance of Presented Method for Emodin Determination

Under the optimum conditions described, the calibration graph of CL intensity was linear with emodin concentration in the range of 0.5–300 ng·mL−1, given the regression equation Δ 𝐼 C L = 4 0 . 2 9 L n 𝐶 + 2 4 . 9 6 ( 𝑅 = 0 . 9 9 5 6 ) , with detection limit of 0.2 ng·mL−1 (3σ) and RSDs of less than 3.5%.

3.5. Interference Study

Under optimum conditions, the effect of foreign substances was investigated by analyzing a standard solution of emodin (50 ng·mL−1) to which increasing amounts of interfering substances were added. The tolerable limit of a foreign species was taken as a relative error of less than 5.0%. The excipients commonly found in the pharmaceutical tablets, such as starch, lactose, cellulose, stearic acid, agar, talc, fructose, and sucrose did not interfere with the determination at tolerable concentrations of 10 μg·mL−1, and the tolerable concentrations for other analytes were 5.0 μg·mL−1 for N O 3 , A c , I-, P O 4 3 , 2.5 μg·mL−1 for N H 4 + , M g 2 + , C a 2 + , ethanol, glutin, 0.1 μg·mL−1 for Cu2+, Zn2+, Cr3+ and Fe2+/Fe3+, respectively.

3.6. Possible Luminol-Mb-Emodin CL Mechanism

The possible CL mechanism of luminol-Mb-emodin reaction was discussed by fluorescence and CL. It can be seen that a strong fluorescence emission of Mb ( 𝜆 e x / 𝜆 e m , m a x = 2 8 0 / 3 2 6  nm) was quenched evidently in the presence of emodin as shown in Figure 4. The linear equation was 𝐹 0 / 𝐹 = 0 . 0 4 𝐶 e m o d i n + 1 . 0 1 ( 𝑅 = 0 . 9 9 5 0 ) , where 𝐹 0 and 𝐹 were the fluorescence intensity of 1.0 μmol·L−1 Mb in the absence and in the presence of emodin with its concentration ranging from 0.1 to 10 μmol·L−1. From Stern-Volmer equation [21], the quenching rate constant 𝐾 q 4 . 0 5 × 1 0 1 2  L·mol−1·s−1 was obtained which was far greater than the maximum scatter collision-quenching constant of various quenchers with biopolymers 2.0 × 1010 L·mol−1·s−1 [22]. It was deduced that the fluorescence quenching of Mb with emodin was initiated by forming the ground-state complex and resulted in the CL intensity of luminol-Mb system decreased as presented in Figure 3.

4. Application

4.1. Determination of Emodin in Pharmaceutical Preparations

Following the procedure detailed above, the proposed method was applied in the determination of emodin in pharmaceutical preparations SANHUANG Tablets. The results were listed in Table 1 showing that the recovery rate ranged from 93.3 to 105.0% with the RSDs of less than 3.0% ( 𝑛 = 5 ).


Sample no.Added/found (ng·mL−1)RSD (%)Recovery (%)Contentb (%)

 10/2.52.1105.00.68
2.0/4.71.5
 20/2.42.296.70.67
3.0/5.32.3
 30/2.52.0102.00.69
5.0/7.61.7
 40/5.62.293.30.67
3.0/8.31.6
 50/5.62.394.00.68
5.0/10.31.5
 60/5.72.4102.50.68
8.0/13.71.4

aThe average of five determinations.
bPer tablet weight: 425 ± 10 mg.
4.2. Determination of Emodin in Spiked Human Serum Samples

Emodin in the spiked human serum samples prepared in the experimental section was measured, and the results were summarized in Table 2. It can be seen that the recoveries for the determination of emodin were from 94.0 to 106.3% and the RSDs were less than 3.5%, confirming the applicability of this method for emodin determination in biological samples.


Sample no.Added/found (ng·mL−1)RSD (%)Recovery (%)By proposed method/spiked (μg·mL−1)

 10/19.63.3 103.2 5.15/5.0
20.0/40.32.1
 20/20.22.8 99.4 9.94/10.0
30.0/50.11.9
 30/30.22.4 106.3 15.94/15.0
20.0/51.32.1
 40/50.62.2 103.5 25.87/25.0
20.0/71.31.6
 50/30.13.1 94.0 28.20/30.0
20.0/48.91.5
 60/21.93.4 95.8 38.30/40.0
20.0/43.92.3

aThe average of five determinations.

5. Conclusion

A simple and sensitive CL procedure was established based on the quenching effect of emodin on the luminol-Mb CL system for the determination of emodin in pharmaceutical preparations. A comparison of the proposed CL procedure with other methods was presented in Table 3. It is clear that the proposed CL method offers the highest sensitivity and the least reagent consumption for the determination of emodin in pharmaceutical preparations and biofluids.


MethodsConcentration range (μg·mL−1)LOD (ng·mL−1)Refs

HPLC 4 . 0 × 1 0 2 8 . 0 40.0[12]
1 . 0 × 1 0 2 1 . 0 3.0[11]
CE 4 . 0 1 . 2 × 1 0 2 /[13]
ECL 2 . 4 × 1 0 2 2 . 1 2.1[18]
0 . 3 2 7 . 0 81.1[17]
UPLC-MS/MS 3 . 9 × 1 0 2 1 0 . 0 20.0[14]
EC 5 . 0 × 1 0 3 0 . 3 2.0[15]
UV-Vis 1 . 0 4 . 0 × 1 0 2 /[16]
CL 5 . 0 × 1 0 4 0 . 3 0.2This work

Acknowledgments

The authors gratefully acknowledge the financial support from Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, China, Shaanxi Province Nature Science Foundation (no. 2006B05), the NWU Graduate Innovation and Creativity Funds (no. 10YZZ29 and 09YZZ45), and the NWU Graduate Experimental Research Funds, China (no. 09YSY18).

References

  1. W. Chen, F. Y. He, and Y. Q. Li, “The apoptosis effect of hispolon from Phellinus linteus (Berkeley & Curtis) Teng on human epidermoid KB cells,” Journal of Ethnopharmacology, vol. 105, no. 1-2, pp. 280–285, 2006. View at: Publisher Site | Google Scholar
  2. H. Matsuda, H. Shimoda, T. Morikawa, and M. Yoshikawa, “Phytoestrogens from the roots of Polygonum cuspidatum (Polygonaceae): structure-requirement of hydroxyanthraquinones for estrogenic activity,” Bioorganic and Medicinal Chemistry Letters, vol. 11, no. 14, pp. 1839–1842, 2001. View at: Publisher Site | Google Scholar
  3. G. Srinivas, S. Babykutty, P. P. Sathiadevan, and P. Srinivas, “Molecular mechanism of emodin action: transition from laxative ingredient to an antitumor agent,” Medicinal Research Reviews, vol. 27, no. 5, pp. 591–608, 2007. View at: Publisher Site | Google Scholar
  4. L. Liu, J. Zou, X. Liu, L. H. Jiang, and J. Li, “Inhibition of ATP-induced macrophage death by emodin via antagonizing P2X7 receptor,” European Journal of Pharmacology, vol. 640, no. 1–3, pp. 15–19, 2010. View at: Publisher Site | Google Scholar
  5. J. C. Ko, Y. J. Su, S. T. Lin et al., “Suppression of ERCC1 and Rad51 expression through ERK1/2 inactivation is essential in emodin-mediated cytotoxicity in human non-small cell lung cancer cells,” Biochemical Pharmacology, vol. 79, no. 4, pp. 655–664, 2010. View at: Publisher Site | Google Scholar
  6. H. Z. Lee, W. H. Yang, M. J. Hour et al., “Photodynamic activity of aloe-emodin induces resensitization of lung cancer cells to anoikis,” European Journal of Pharmacology, vol. 648, no. 1–3, pp. 50–58, 2010. View at: Publisher Site | Google Scholar
  7. T. Liu, H. Jin, Q. R. Sun, J. H. Xu, and H. T. Hu, “Neuroprotective effects of emodin in rat cortical neurons against β-amyloid-induced neurotoxicity,” Brain Research, vol. 1347, pp. 149–160, 2010. View at: Publisher Site | Google Scholar
  8. C. G. Wang, J. Q. Yang, B. Z. Liu et al., “Anti-tumor activity of emodin against human chronic myelocytic leukemia K562 cell lines in vitro and in vivo,” European Journal of Pharmacology, vol. 627, no. 1–3, pp. 33–41, 2010. View at: Publisher Site | Google Scholar
  9. H. R. Xiong, J. Luo, W. Hou, H. Xiao, and Z. Q. Yang, “The effect of emodin, an anthraquinone derivative extracted from the roots of Rheum tanguticum, against herpes simplex virus in vitro and in vivo,” Journal of Ethnopharmacology, vol. 133, no. 2, pp. 718–723, 2011. View at: Publisher Site | Google Scholar
  10. C. M. Hsu, Y. A. Hsu, Y. Tsai et al., “Emodin inhibits the growth of hepatoma cells: finding the common anti-cancer pathway using Huh7, Hep3B, and HepG2 cells,” Biochemical and Biophysical Research Communications, vol. 392, no. 4, pp. 473–478, 2010. View at: Publisher Site | Google Scholar
  11. R. Mandrioli, L. Mercolini, A. Ferranti, S. Fanali, and M. A. Raggi, “Determination of aloe emodin in Aloe vera extracts and commercial formulations by HPLC with tandem UV absorption and fluorescence detection,” Food Chemistry, vol. 126, no. 1, pp. 387–393, 2011. View at: Publisher Site | Google Scholar
  12. D. Yan and Y. Ma, “Simultaneous quantification of five anthraquinones in rat plasma by high-performance liquid chromatography with fluorescence detection,” Biomedical Chromatography, vol. 21, no. 5, pp. 502–507, 2007. View at: Publisher Site | Google Scholar
  13. Z. H. Yin, Q. Xu, Y. Tu, Q. J. Zou, J. H. Yu, and Y. D. Zhao, “Electrocatalysis of emodin at multi-wall nanotubes,” Bioelectrochemistry, vol. 72, no. 2, pp. 155–160, 2008. View at: Publisher Site | Google Scholar
  14. W. Liu, Z. Zheng, X. Liu et al., “Sensitive and robust UPLC-MS/MS method to determine the gender-dependent pharmacokinetics in rats of emodin and its glucuronide,” Journal of Pharmaceutical and Biomedical Analysis, vol. 54, no. 5, pp. 1157–1162, 2011. View at: Publisher Site | Google Scholar
  15. J. Li, J. Chen, X. L. Zhang, C. H. Lu, and H. H. Yang, “A novel sensitive detection platform for antitumor herbal drug aloe-emodin based on the graphene modified electrode,” Talanta, vol. 83, no. 2, pp. 553–558, 2010. View at: Publisher Site | Google Scholar
  16. Y. F. Du, L. M. Xu, and B. H. Yao, “Determination of emodin in rhubarb by spectrophotometry,” Chemical Analysis and Meterage, vol. 16, pp. 43–45, 2007. View at: Google Scholar
  17. L. Wang, Z. Zhang, and B. Ye, “Study on the electrochemical behaviour of the anticancer herbal drug emodin,” Electrochimica Acta, vol. 51, no. 26, pp. 5961–5965, 2006. View at: Publisher Site | Google Scholar
  18. W. Zheng, S. Wang, X. Chen, and Z. Hu, “Identification and determination of active anthraquinones in Chinese teas by micellar electrokinetic capillary chromatography,” Biomedical Chromatography, vol. 18, no. 3, pp. 167–172, 2004. View at: Publisher Site | Google Scholar
  19. Z. H. Song, L. Wang, and S. Hou, “A study of the chemiluminescence behavior of myoglobin with luminol and its analytical applications,” Analytical and Bioanalytical Chemistry, vol. 378, no. 2, pp. 529–535, 2004. View at: Publisher Site | Google Scholar
  20. Z. M. Wang and Z. H. Song, “A valuable way for understanding the relationships between lysozyme and cephalosporin analogues by flow injection chemiluminescence,” Analyst, vol. 135, no. 10, pp. 2546–2553, 2010. View at: Publisher Site | Google Scholar
  21. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Plenum Press, New York, NY, USA, 1983.
  22. J. R. Lakowicz and G. Weber, “Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules,” Biochemistry, vol. 12, no. 21, pp. 4161–4170, 1973. View at: Google Scholar

Copyright © 2012 Yun Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Download other formatsMore
 Order printed copiesOrder
Views903
Downloads3962
Citations