Table of Contents Author Guidelines Submit a Manuscript
Journal of Spectroscopy
Volume 2013 (2013), Article ID 616159, 8 pages
http://dx.doi.org/10.1155/2013/616159
Research Article

Synthesis and Characterization of Modified Cellulose Acetate Propionate Nanocomposites via Sol-Gel Process

1Faculty of Commodity Science, Poznan' University of Economics, Al. Niepodleglosci 10, 61-875 Poznan', Poland
2Faculty of Technical Physics, Poznan' University of Technology, Ul. Nieszawska 13A, 60-965 Poznan', Poland

Received 27 June 2012; Accepted 5 November 2012

Academic Editor: Carlos Andres Palacio

Copyright © 2013 Patrycja Wojciechowska et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Kickelbick, “Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale,” Progress in Polymer Science, vol. 28, no. 1, pp. 83–114, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. S. K. Young, G. C. Gemeinhardt, J. W. Sherman et al., “Covalent and non-covalently coupled polyester-inorganic composite materials,” Polymer, vol. 43, no. 23, pp. 6101–6114, 2002. View at Google Scholar · View at Scopus
  3. V. Bounor-Legaré, C. Angelloz, P. Blanc, P. Cassagnau, and A. Michel, “A new route for organic-inorganic hybrid material synthesis through reactive processing without solvent,” Polymer, vol. 45, no. 5, pp. 1485–1493, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Yoshioka, K. Takabe, J. Sugiyama, and Y. Nishio, “Newly developed nanocomposites from cellulose acetate/layered silicate/poly(ε-caprolactone): synthesis and morphological characterization,” Journal of Wood Science, vol. 52, no. 2, pp. 121–127, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. R. J. B. Pinto, P. A. A. P. Marques, A. M. Barros-Timmons, T. Trindade, and C. P. Neto, “Novel SiO2/cellulose nanocomposites obtained by in situ synthesis and via polyelectrolytes assembly,” Composites Science and Technology, vol. 68, no. 3-4, pp. 1088–1093, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. N. A. Zakharov, Z. A. Ezhova, E. M. Koval, V. T. Kalinnikov, and A. E. Chalykh, “Hydroxyapatite-carboxymethyl cellulose nanocomposite biomaterial,” Inorganic Materials, vol. 41, no. 5, pp. 509–515, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Pirkkalainen, K. Leppänen, U. Vainio et al., “Nanocomposites of magnetic cobalt nanoparticles and cellulose,” European Physical Journal D, vol. 49, no. 3, pp. 333–342, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Yano, K. Iwata, and K. Kurita, “Physical properties and structure of organic-inorganic hybrid materials produced by sol-gel process,” Materials Science and Engineering C, vol. 6, no. 2-3, pp. 75–90, 1998. View at Publisher · View at Google Scholar
  9. F. J. Rodriguez, A. Coloma, M. J. Galotto, A. Guarda, and J. E. Bruna, “Effect of organoclay content and molecular weight on cellulose acetate nanocomposites properties,” Polymer Degradation and Stability, vol. 97, no. 10, pp. 1996–2001, 2012. View at Publisher · View at Google Scholar
  10. J. A. de Lima, C. A. Pinotti, M. I. Felisberti, and M. C. Goncalves, “Blends and clay nanocomposites of cellulose acetate and poly(epichlorohydrin),” Composites Part B, vol. 43, no. 5, pp. 2375–2381, 2012. View at Publisher · View at Google Scholar
  11. P. Wojciechowska and Z. Foltynowicz, “Synthesis of organic-inorganic hybrids based on cellulose acetate butyrate,” Polimery, vol. 54, no. 11-12, pp. 845–848, 2009. View at Google Scholar · View at Scopus
  12. S. Jo and K. Park, “Surface modification using silanated poly(ethylene glycol)s,” Biomaterials, vol. 21, no. 6, pp. 605–616, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Messori, M. Toselli, F. Pilati et al., “Flame retarding poly(methyl methacrylate) with nanostructured organic-inorganic hybrids coatings,” Polymer, vol. 44, no. 16, pp. 4463–4470, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. Polish Patent Office 209829, 2011.
  15. I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Review of Scientific Instruments, vol. 78, no. 1, Article ID 013705, 2007. View at Publisher · View at Google Scholar
  16. S. K. Young, W. L. Jarret, and K. A. Mauritz, “Nafion/ORMOSIL nanocomposites via polymer-in situ sol-gel reactions. 1. Probe of ORMOSIL phase nanostructures by 29Si solid-state NMR spectroscopy,” Polymer, vol. 43, no. 8, pp. 2311–2320, 2002. View at Publisher · View at Google Scholar
  17. Q. Zhong, D. Inniss, K. Kjoller, and V. B. Elings, “Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy,” Surface Science, vol. 290, no. 1-2, pp. L688–L692, 1993. View at Google Scholar · View at Scopus
  18. D. Klinov and S. Magonov, “True molecular resolution in tapping-mode atomic force microscopy with high-resolution probes,” Applied Physics Letters, vol. 84, no. 14, p. 2697, 2004. View at Publisher · View at Google Scholar
  19. R. Garcia, R. Magerle, and R. Perez, “Nanoscale compositional mapping with gentle forces,” Nature Materials, vol. 6, pp. 405–411, 2007. View at Publisher · View at Google Scholar
  20. J. P. Cleveland, B. Anczykowski, A. E. Schmid, and V. B. Elings, “Energy dissipation in tapping-mode atomic force microscopy,” Applied Physics Letters, vol. 72, no. 20, pp. 2613–2615, 1998. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Achalla, J. McCormick, T. Hodge et al., “Characterization of elastomeric blends by atomic force microscopy,” Journal of Polymer Science, Part B, vol. 44, no. 3, pp. 492–503, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Y. F. Liu, Y. Jin, A. Hiltner, and E. Baer, “Probing nanoscale polymer interactions by forced-assembly,” Macromolecular Rapid Communications, vol. 24, no. 16, pp. 943–948, 2003. View at Publisher · View at Google Scholar
  23. M. S. Sanchez, J. M. Mateo, F. J. R. Colomer, and J. L. G. Ribelles, “Nanoindentation and tapping mode AFM study of phase separation in poly(ethyl acrylate-co-hydroxyethyl methacrylate) copolymer networks,” European Polymer Journal, vol. 42, no. 6, pp. 1378–1383, 2006. View at Publisher · View at Google Scholar
  24. S. N. Magonov, J. Cleveland, V. Elings, D. Denley, and M. H. Whangbo, “Tapping-mode atomic force microscopy study of the near-surface composition of a styrene-butadiene-styrene triblock copolymer film,” Surface Science, vol. 389, no. 1–3, pp. 201–211, 1997. View at Google Scholar · View at Scopus