Table of Contents Author Guidelines Submit a Manuscript
Journal of Spectroscopy
Volume 2014 (2014), Article ID 965037, 7 pages
Research Article

Synthesis of Hydrophobic Mesoporous Material MFS and Its Adsorption Properties of Water Vapor

1College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
2School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China

Received 25 April 2014; Accepted 18 May 2014; Published 5 June 2014

Academic Editor: Qingrui Zhang

Copyright © 2014 Guotao Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Fluorine-containing hydrophobic mesoporous material (MFS) with high surface area is successfully synthesized with hydrothermal synthesis method by using a perfluorinated surfactant SURFLON S-386 template. The adsorption properties of water vapor on the synthesized MFS are also investigated by using gravimetric method. Results show that SEM image of the MFS depicted roundish morphology with the average crystal size of 1-2 μm. The BET surface area and total pore volume of the MFS are 865.4 m2 g−1 and 0.74 cm3 g−1 with a narrow pore size distribution at 4.9 nm. The amount of water vapor on the MFS is about 0.41 mmol g−1 at 303 K, which is only 52.6% and 55.4% of MCM-41 and SBA-15 under the similar conditions, separately. The isosteric adsorption heat of water on the MFS is gradually about 27.0–19.8 kJ mol−1, which decreases as the absorbed water vapor amount increases. The value is much smaller than that on MCM-41 and SBA-15. Therefore, the MFS shows more hydrophobic surface properties than the MCM-41 and SBA-15. It may be a kind of good candidate for adsorption of large molecule and catalyst carrier with high moisture resistance.