Table of Contents Author Guidelines Submit a Manuscript
Journal of Spectroscopy
Volume 2016, Article ID 2368131, 9 pages
http://dx.doi.org/10.1155/2016/2368131
Research Article

Study of Molecular and Ionic Vapor Composition over CeI3 by Knudsen Effusion Mass Spectrometry

1Research Institute of Thermodynamics and Kinetics, Ivanovo State University of Chemistry and Technology, Ivanovo 153000, Russia
2Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland

Received 7 August 2016; Accepted 17 October 2016

Academic Editor: Alessandro Longo

Copyright © 2016 A. M. Dunaev et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Hirayama and P. M. Castle, “Mass spectra of rare earth triiodides,” Journal of Physical Chemistry, vol. 77, no. 26, pp. 3110–3114, 1973. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Hirayama, J. F. Rome, and F. E. Camp, “Vapor pressures and thermodynamic properties of lanthanide triiodides,” Journal of Chemical & Engineering Data, vol. 20, no. 1, pp. 1–6, 1975. View at Publisher · View at Google Scholar
  3. P. J. Chantry, “Positive ion appearance potentials measured in CeI3,” The Journal of Chemical Physics, vol. 65, no. 11, pp. 4421–4425, 1976. View at Publisher · View at Google Scholar · View at Scopus
  4. P. J. Chantry, “Negative ion formation in cerium triiodide,” The Journal of Chemical Physics, vol. 65, no. 11, pp. 4412–4420, 1976. View at Publisher · View at Google Scholar · View at Scopus
  5. C. W. Struck and A. E. Feuersanger, “Knudsen cell measurements of CeI3(s) sublimation enthalpy,” High Temperature Science, vol. 31, pp. 127–145, 1991. View at Google Scholar
  6. M. Ohnesorge, Untersuchungen zur Hochtemperaturchemie quecksilberfreier Metallhalogenid-Entladungslampen mit keramischem Brenner [Ph.D. thesis], Forschungszentrum Jülich, Jülich, Germany, 2005.
  7. A. R. Villani, B. Brunetti, and V. Piacente, “Vapor pressure and enthalpies of vaporization of cerium trichloride, tribromide, and triiodide,” Journal of Chemical and Engineering Data, vol. 45, no. 5, pp. 823–828, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. C. S. Liu and R. J. Zoilweg, “Complex molecules in cesium-rare earth iodide vapors,” The Journal of Chemical Physics, vol. 60, pp. 2400–2413, 1970. View at Google Scholar · View at Scopus
  9. J. J. Curry, E. G. Estupiñán, W. P. Lapatovich et al., “Study of CeI3 evaporation in the presence of group 13 metal-iodides,” Journal of Applied Physics, vol. 115, no. 3, Article ID 034509, 2014. View at Publisher · View at Google Scholar · View at Scopus
  10. D. N. Sergeev, M. F. Butman, V. B. Motalov, L. S. Kudin, and K. W. Krämer, “Knudsen effusion mass spectrometric determination of the complex vapor composition of samarium, europium, and ytterbium bromides,” Rapid Communications in Mass Spectrometry, vol. 27, no. 15, pp. 1715–1722, 2013. View at Publisher · View at Google Scholar · View at Scopus
  11. D. N. Sergeev, A. M. Dunaev, M. F. Butman, D. A. Ivanov, L. S. Kudin, and K. W. Krämer, “Energy characteristics of molecules and ions of ytterbium iodides,” International Journal of Mass Spectrometry, vol. 374, pp. 1–3, 2014. View at Publisher · View at Google Scholar · View at Scopus
  12. L. S. Kudin, D. E. Vorob'ev, and A. E. Grishin, “The thermochemical characteristics of the LnCl4 and Ln2Cl7 negative ions,” Russian Journal of Physical Chemistry A, vol. 81, no. 2, pp. 147–158, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. V. B. Motalov, D. E. Vorobiev, L. S. Kudin, and T. Markus, “Mass spectrometric investigation of neutral and charged constituents in saturated vapor over PrI3,” Journal of Alloys and Compounds, vol. 473, no. 1-2, pp. 36–42, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. A. M. Dunaev, L. S. Kudin, V. B. Motalov, D. A. Ivanov, M. F. Butman, and K. W. Krämer, “Mass spectrometric study of molecular and ionic sublimation of lanthanum triiodide,” Thermochimica Acta, vol. 622, pp. 82–87, 2015. View at Publisher · View at Google Scholar · View at Scopus
  15. D. N. Sergeev, Energy characteristics of molecules and ions of lanthanide bromide (Sm, Eu, Yb) studied by high temperature mass spectrometry [Ph.D. thesis], 2011.
  16. A. M. Dunaev, A. S. Kryuchkov, L. S. Kudin, and M. F. Butman, “Automatic complex for high temperature investigation on basis of mass spectrometer MI1201,” Izvestiya Vysshikh Uchebnykh Zavedeniy Seriya “Khimiya I Khimicheskaya Tekhnologiya”, vol. 54, pp. 73–77, 2011 (Russian). View at Google Scholar
  17. D. N. Sergeev, A. M. Dunaev, D. A. Ivanov, Y. A. Golovkina, and G. I. Gusev, “Automatization of mass spectrometer for the obtaining of ionization efficiency functions,” Pribory i Tekhnika Eksperimenta, vol. 1, pp. 139–140, 2014 (Russian). View at Publisher · View at Google Scholar
  18. A. M. Dunaev, V. B. Motalov, and L. S. Kudin, “High temperature mass spectrometric method for the determination of work function of the ionic crystals: triiodide of lanthanum, cerium, and praseodymium,” Russian Chemical Journal, vol. 59, pp. 85–92, 2015. View at Google Scholar
  19. K. Kimura, S. Katsumata, Y. Achiba, T. Yamazaki, and S. Iwata, “Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules,” in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, p. 268, Japan Scientific Societies Press, Tokyo, Japan, 1981. View at Google Scholar
  20. D. N. Sergeev, M. F. Butman, V. B. Motalov, L. S. Kudin, and K. W. Krämer, “Extrapolated difference technique for the determination of atomization energies of Sm, Eu, and Yb bromides,” International Journal of Mass Spectrometry, vol. 348, pp. 23–28, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. D. R. Lide, Ed., CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, Fla, USA, 90th edition, 2009.
  22. L. V. Gurvich, V. S. Iorish, I. V. Veitz et al., Eds., A Thermodynamic Database of Individual Substances and Software System for the Personal Computer, IVTANTERMO for Windows, Glushko Thermocenter of RAS, Version 3.0, 2000.
  23. S. Yagi and T. Nagata, “Absolute total and partial cross sections for ionization of free lanthanide atoms by electron impact,” Journal of the Physical Society of Japan, vol. 70, no. 9, pp. 2559–2567, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. T. R. Hayes, R. C. Wetzel, and R. S. Freund, “Absolute electron-impact-ionization cross-section measurements of the halogen atoms,” Physical Review A, vol. 35, no. 2, pp. 578–584, 1987. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Hilpert, “High temperature mass spectrometry in materials research,” Rapid Communications in Mass Spectrometry, vol. 5, no. 4, pp. 175–187, 1991. View at Publisher · View at Google Scholar
  26. J. Drowart, C. Chatillon, J. Hastie, and D. Bonnell, “High-temperature mass spectrometry: instrumental techniques, ionization cross-sections, pressure measurements, and thermodynamic data (IUPAC Technical Report),” Pure and Applied Chemistry, vol. 77, no. 4, pp. 683–737, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. R. C. Feber, Heats of Dissociation of Gaseous Halides. TID-4500, Los Alamos Scientific Laboratory, 40th edition, 1965.
  28. C. W. Struck and J. A. Baglio, “Estimates for the enthalpies of formation of rare-earth solid and gaseous trihalides,” High Temperature Science, vol. 31, pp. 209–237, 1992. View at Google Scholar
  29. R. J. M. Konings and A. Kovács, “Thermodynamic properties of the lanthanide (III) halides,” in Handbook on the Physics and Chemistry of Rare Earths, K. Gschneidner Jr., J.-C. G. Bünzli, and V. Pecharsky, Eds., vol. 33, pp. 147–247, Elsevier Science B.V., 2003. View at Publisher · View at Google Scholar
  30. B. Ruščić, G. L. Goodman, and J. Berkowitz, “Photoelectron spectra of the lanthanide trihalides and their interpretation,” The Journal of Chemical Physics, vol. 78, no. 9, pp. 5443–5467, 1983. View at Publisher · View at Google Scholar · View at Scopus
  31. L. A. Kaledin, M. C. Heaven, and R. W. Field, “Thermochemical properties (D°0 and IP) of the lanthanide monohalides,” Journal of Molecular Spectroscopy, vol. 193, no. 2, pp. 285–292, 1999. View at Publisher · View at Google Scholar
  32. S. A. Mucklejohn, “Molecular constants and standard enthalpies of formation for the lanthanide monohalide gaseous cations, LnX+, X = F, Cl, Br, I,” Journal of Light and Visual Environment, vol. 37, no. 2-3, pp. 78–88, 2013. View at Publisher · View at Google Scholar
  33. A. M. Sapegin, A. V. Baluev, and O. P. Charkin, “Formation enthalpies and atomization energies of gaseous lanthanide halides,” Russian Journal of Inorganic Chemistry, vol. 32, pp. 318–321, 1987 (Russian). View at Google Scholar
  34. L. S. Kudin, M. F. Butman, D. N. Sergeev, V. B. Motalov, and K. W. Krämer, “Determination of the work function for europium dibromide by knudsen effusion mass spectrometry,” Journal of Chemical & Engineering Data, vol. 57, no. 2, pp. 436–438, 2012. View at Publisher · View at Google Scholar
  35. C. E. Myers and D. T. Graves, “Thermodynamic properties of lanthanide trihalide molecules,” Journal of Chemical and Engineering Data, vol. 22, no. 4, pp. 436–439, 1977. View at Publisher · View at Google Scholar · View at Scopus
  36. L. B. Pankratz, “Thermodynamic properties of halides,” United States Bureau of Mines, Bulletin 674, 1984.
  37. I. Barin, Thermochemical Data of Pure Substances, John Wiley & Sons, 3rd edition, 1995–1999.
  38. E. L. Osina, V. S. Yungman, and L. N. Gorokhov, “Thermodynamic properties of lanthanide triiodide molecules,” Issledovano v Rossii, vol. 1–4, pp. 124–132, 2000 (Russian). View at Google Scholar
  39. V. G. Solomonik, A. N. Smirnov, O. A. Vasiliev, E. V. Starostin, and I. S. Navarkin, “Nonemprirical study on the electronic structure of cerium, praseodymium, and ytterbium trihalide molecules,” Izvestiya Vysshikh Uchebnykh Zavedeniy Seriya “Khimiya I Khimicheskaya Tekhnologiya”, vol. 57, pp. 26–27, 2014 (Russian). View at Google Scholar
  40. A. Kovács, “Molecular vibrations of rare earth trihalide dimers M2X6 (M=Ce, Dy; X=Br, I),” Journal of Molecular Structure, vol. 482-483, pp. 403–407, 1999. View at Publisher · View at Google Scholar
  41. L. N. Gorokhov, G. A. Bergman, E. L. Osina, and V. S. Yungman, “High temperature materials chemistry,” in Proceedings of the 10th International IUPAC Conference, K. Hilpert, F. W. Froben, and L. Singheiser, Eds., pp. 103–106, Forschungszentrum Juelich, Germany, April 2000.
  42. A. M. Pogrebnoi, L. S. Kudin, A. Yu. Kuznetsov, and M. F. Butman, “Molecular and ionic clusters in saturated vapor over lutetium trichloride,” Rapid Communications in Mass Spectrometry, vol. 11, no. 14, pp. 1536–1546, 1997. View at Publisher · View at Google Scholar · View at Scopus
  43. V. G. Solomonik, A. Y. Yachmenev, and A. N. Smirnov, “Structure, force fields, and vibrational spectra of cerium tetrahalides,” Journal of Structural Chemistry, vol. 49, no. 4, pp. 613–620, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. V. G. Solomonik, A. N. Smirnov, and M. A. Mileyev, “Structure, vibrational spectra, and energetic stability of LnX4 ions (Ln=La, Lu; X=F, Cl, Br, I),” Russian Journal of Coordination Chemistry, vol. 31, no. 3, pp. 203–212, 2005. View at Google Scholar