Table of Contents Author Guidelines Submit a Manuscript
Journal of Spectroscopy
Volume 2016 (2016), Article ID 9509043, 7 pages
http://dx.doi.org/10.1155/2016/9509043
Research Article

Thickness Measurement of V2O5 Nanometric Thin Films Using a Portable XRF

1Laboratório de Física Nuclear Aplicada, Departamento de Física, Universidade Estadual de Londrina, Campus Universitário, Caixa Postal 10011, 86057-970 Londrina, PR, Brazil
2Laboratório de Filmes Finos e Materiais, Departamento de Física, Universidade Estadual de Londrina, Campus Universitário, Caixa Postal 10011, 86057-970 Londrina, PR, Brazil
3Instituto di Matematica e Fisica, Università degli Studi di Sassari, Via Viena 2, 07100 Sassari, Italy

Received 30 September 2015; Revised 9 December 2015; Accepted 14 December 2015

Academic Editor: Jisheng Pan

Copyright © 2016 Fabio Lopes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. Chen, L. Rieth, M. S. Miller, and F. Solzbacher, “Pulsed laser deposited Y-doped BaZrO3 thin films for high temperature humidity sensors,” Sensors and Actuators B: Chemical, vol. 142, no. 1, pp. 166–174, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Strehle, J. W. Bartha, and K. Wetzig, “Electrical properties of electroplated Cu(Ag) thin films,” Thin Solid Films, vol. 517, no. 11, pp. 3320–3325, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Kawahara, T. Sasaki, and S. Fujita, “Improvement of the conversion efficiency of the concentrator photovoltaic with the wavelength selective transmission thin film,” Current Applied Physics, vol. 11, no. 1, supplement, pp. S8–S11, 2011. View at Publisher · View at Google Scholar
  4. Y. Ye, J. Chen, and H. Zhou, “An investigation of friction and wear performances of bonded molybdenum disulfide solid film lubricants in fretting conditions,” Wear, vol. 266, no. 7-8, pp. 859–864, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Ohring, The Material Science of Thin Films, Academic Press, San Diego, Calif, USA, 1991.
  6. D. L. Smith, Thin-Film Deposition: Principles & Practice, McGraw-Hill, 1995.
  7. P. Singh and D. Kaur, “Influence of film thickness on texture and electrical and optical properties of room temperature deposited nanocrystalline V2O5 thin films,” Journal of Applied Physics, vol. 103, no. 4, Article ID 043507, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. E. S. M. Goh, T. P. Chen, C. Q. Sun, and Y. C. Liu, “Thickness effect on the band gap and optical properties of germanium thin films,” Journal of Applied Physics, vol. 107, no. 2, Article ID 024305, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. N. S. Das, P. K. Ghosh, M. K. Mitra, and K. K. Chattopadhyay, “Effect of film thickness on the energy band gap of nanocrystalline CdS thin films analyzed by spectroscopic ellipsometry,” Physica E: Low-Dimensional Systems and Nanostructures, vol. 42, no. 8, pp. 2097–2102, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Hayashi, M. Matsuda, T. Asozu, M. Sataka, M. Nakamura, and A. Iwase, “In situ RBS measurements for the effect of swift heavy ion irradiation on metal-insulator interfaces,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 314, pp. 176–179, 2013. View at Publisher · View at Google Scholar · View at Scopus
  11. R. K. Pandey, M. Kumar, S. A. Khan et al., “Study of electronic sputtering of CaF2 thin films,” Applied Surface Science, vol. 289, pp. 77–80, 2014. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Van Steenberge, W. P. Leroy, and D. Depla, “Influence of oxygen flow and film thickness on the texture and microstructure of sputtered ceria thin films,” Thin Solid Films, vol. 553, pp. 2–6, 2014. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Ki-Won, S. Hyun-Su, L. Ju-Hyun, C. Kwon-Bum, and K. Han-Ki, “The effects of thickness on the electrical, optical, structural and morphological properties of Al and Ga co-doped ZnO films grown by linear facing target sputtering,” Vacuum, vol. 101, pp. 250–256, 2014. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Cesareo and A. Brunetti, “Metal sheets thickness determined by energy-dispersive X-ray fluorescence analysis,” Journal of X-Ray Science and Technology, vol. 16, no. 2, pp. 119–130, 2008. View at Google Scholar · View at Scopus
  15. R. Sitko, “Quantitative X-ray fluorescence analysis of samples of less than ‘infinite thickness’: difficulties and possibilities,” Spectrochimica Acta. Part B Atomic Spectroscopy, vol. 64, no. 11-12, pp. 1161–1172, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. J.-Y. Kim, Y. S. Choi, Y. J. Park, K. Song, S.-H. Jung, and E. M. A. Hussein, “Thickness measurement of organic films using Compton scattering of characteristic X-rays,” Applied Radiation and Isotopes, vol. 69, no. 9, pp. 1241–1245, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Bonizzoni, S. Caglio, A. Galli, and G. Poldi, “A non invasive method to detect stratigraphy, thicknesses and pigment concentration of pictorial multilayers based on EDXRF and vis-RS: in situ applications,” Applied Physics A: Materials Science and Processing, vol. 92, no. 1, pp. 203–210, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. M. S. Blonski and C. R. Appoloni, “Pigments analysis and gold layer thickness evaluation of polychromy on wood objects by PXRF,” Applied Radiation and Isotopes, vol. 89, pp. 47–52, 2014. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Ferretti, C. Polese, and C. R. García, “X-ray fluorescence investigation of gilded and enamelled silver: the case study of four medieval processional crosses from central Italy,” Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 83-84, pp. 21–27, 2013. View at Publisher · View at Google Scholar · View at Scopus
  20. I. Queralt, J. Ibañez, E. Marguí, and J. Pujol, “Thickness measurement of semiconductor thin films by energy dispersive X-ray fluorescence benchtop instrumentation: application to GaN epilayers grown by molecular beam epitaxy,” Spectrochimica Acta. Part B Atomic Spectroscopy, vol. 65, no. 7, pp. 583–586, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Cesareo, A. D. Bustamante, J. S. Fabian et al., “Multilayered artifacts in the pre Columbian metallurgy from the North of Peru,” Applied Physics A—Materials Science & Processing, vol. 113, pp. 889–893, 2013. View at Google Scholar
  22. R. Cesareo, A. D. Bustamante, J. S. Fabian et al., “Evolution of pre-Columbian metallurgy from North of Peru studied with a portable non-invasive equipment using energy-dispersive X-Ray fluorescence,” Journal of Materials Science and Engineering B, pp. 48–81, 2011. View at Google Scholar
  23. R. Cesareo, A. Bustamante, J. Fabian et al., “Energy-dispersive X-ray fluorescence analysis of a pre-Columbian funerary gold mask from the Museum of Sicán, Peru,” X-Ray Spectrometry, vol. 39, no. 2, pp. 122–123, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Cesareo, M. A. Rizzutto, A. Brunetti, and D. V. Rao, “Metal location and thickness in a multilayered sheet by measuring /, / and / X-ray ratios,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 267, no. 17, pp. 2890–2896, 2009. View at Publisher · View at Google Scholar
  25. R. E. Van Grieken and A. A. Markowicz, Handbook of X-Ray Spectrometry, Marcel Dekker, New York, NY, USA, 2nd edition, 2002.
  26. A. Brunetti, M. Sanchez del Rio, B. Golosio, A. Simionovici, and A. Somogyi, “A library for X-ray–matter interaction cross sections for X-ray fluorescence applications,” Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 59, no. 10-11, pp. 1725–1731, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. P. J. Potts and M. West, Portable X-Ray Fluorescence Spectrometry: Capabilities for in Situ Analysis, chapter 4, RSC Publishing, Cambridge, UK, 2008.
  28. S. Pessanha, M. Guerra, S. Longelin, A. Le Gac, M. Manso, and M. L. Carvalho, “Determination of gold leaf thickness in a Renaissance illumination using a nondestructive approach,” X-Ray Spectrometry, vol. 43, no. 2, pp. 79–82, 2014. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Sitko, “Quantitative X-ray fluorescence analysis of samples of less than ‘infinite thickness’: difficulties and possibilities,” Spectrochimica Acta—Part B: Atomic Spectroscopy, vol. 64, no. 11-12, pp. 1161–1172, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. L. de Viguerie, V. A. Sole, and P. Walter, “Multilayers quantitative X-ray fluorescence analysis applied to easel paintings,” Analytical and Bioanalytical Chemistry, vol. 395, no. 7, pp. 2015–2020, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Ekinci, Y. Kurucu, E. Öz, and Y. Şahin, “Determination of the coating thicknesses due to the scattered radiation in energy dispersive X-ray fluorescence spectrometry,” Radiation Measurements, vol. 35, no. 3, pp. 223–227, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. L. M. van der Haar, C. Sommer, and M. G. M. Stoop, “New developments in X-ray fluorescence metrology,” Thin Solid Films, vol. 450, no. 1, pp. 90–96, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. J. A. M. Vrielink, R. M. Tiggelaar, J. G. E. Gardeniers, and L. Lefferts, “Applicability of X-ray fluorescence spectroscopy as method to determine thickness and composition of stacks of metal thin films: a comparison with imaging and profilometry,” Thin Solid Films, vol. 520, no. 6, pp. 1740–1744, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. M. F. Al-Kuhaili, E. E. Khawaja, D. C. Ingram, and S. M. A. Durrani, “A study of thin films of V2O5 containing molybdenum from an evaporation boat,” Thin Solid Films, vol. 460, no. 1-2, pp. 30–35, 2004. View at Publisher · View at Google Scholar · View at Scopus