Table of Contents
Journal of Signal Transduction
Volume 2011, Article ID 376543, 10 pages
http://dx.doi.org/10.1155/2011/376543
Research Article

Podocyte Protein, Nephrin, Is a Substrate of Protein Tyrosine Phosphatase 1B

1Division of Nephrology, Department of Medicine, McGill University, Montreal, QC, Canada H3A 2B4
2Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada NIG 2W1

Received 5 April 2011; Revised 15 June 2011; Accepted 14 August 2011

Academic Editor: Céline M. DerMardirossian

Copyright © 2011 Lamine Aoudjit et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Kestilä, U. Lenkkeri, M. Männikkö et al., “Positionally cloned gene for a novel glomerular protein—nephrin—is mutated in congenital nephrotic syndrome,” Molecular Cell, vol. 1, no. 4, pp. 575–582, 1998. View at Google Scholar · View at Scopus
  2. N. Jones, I. M. Blasutig, V. Eremina et al., “Nck adaptor proteins link nephrin to the actin cytoskeleton of kidney podocytes,” Nature, vol. 440, no. 7085, pp. 818–823, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Li, S. Lemay, L. Aoudjit, H. Kawachi, and T. Takano, “Src-family kinase Fyn phosphorylates the cytoplasmic domain of nephrin and modulates its interaction with podocin,” Journal of the American Society of Nephrology, vol. 15, no. 12, pp. 3006–3015, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Verma, B. Wharram, I. Kovari et al., “Fyn binds to and phosphorylates the kidney slit diaphragm component Nephrin,” Journal of Biological Chemistry, vol. 278, no. 23, pp. 20716–20723, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Li, J. Zhu, L. Aoudjit et al., “Rat nephrin modulates cell morphology via the adaptor protein Nck,” Biochemical and Biophysical Research Communications, vol. 349, no. 1, pp. 310–316, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Verma, I. Kovari, A. Soofi, D. Nihalani, K. Patrie, and L. B. Holzman, “Nephrin ectodomain engagement results in Src kinase activation, nephrin phosphorylation, Nck recruitment, and actin polymerization,” Journal of Clinical Investigation, vol. 116, no. 5, pp. 1346–1359, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Jones, L. A. New, M. A. Fortino et al., “Nck proteins maintain the adult glomerular filtration barrier,” Journal of the American Society of Nephrology, vol. 20, no. 7, pp. 1533–1543, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Zhu, N. Sun, L. Aoudjit et al., “Nephrin mediates actin reorganization via phosphoinositide 3-kinase in podocytes,” Kidney International, vol. 73, no. 5, pp. 556–566, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Uchida, K. Suzuki, M. Iwamoto et al., “Decreased tyrosine phosphorylation of nephrin in rat and human nephrosis,” Kidney International, vol. 73, no. 8, pp. 926–932, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. N. K. Tonks, “Protein tyrosine phosphatases: from genes, to function, to disease,” Nature Reviews Molecular Cell Biology, vol. 7, no. 11, pp. 833–846, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. P. E. Thomas, B. L. Wharram, M. Goyal, J. E. Wiggins, L. B. Holzman, and R. C. Wiggins, “GLEPP1, a renal glomerular epithelial cell (podocyte) membrane protein- tyrosine phosphatase. Identification, molecular cloning, and characterization in rabbit,” Journal of Biological Chemistry, vol. 269, no. 31, pp. 19953–19961, 1994. View at Google Scholar · View at Scopus
  12. R. Wang, P. L. St. John P.L., M. Kretzler, R. C. Wiggins, and D. R. Abrahamson, “Molecular cloning, expression, and distribution of glomerular epithelial protein 1 in developing mouse kidney,” Kidney International, vol. 57, no. 5, pp. 1847–1859, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. B. L. Wharram, M. Goyal, P. J. Gillespie et al., “Altered podocyte structure in GLEPP1 (Ptpro)-deficient mice associated with hypertension and low glomerular filtration rate,” Journal of Clinical Investigation, vol. 106, no. 10, pp. 1281–1290, 2000. View at Google Scholar · View at Scopus
  14. M. Takemoto, L. He, J. Norlin et al., “Large-scale identification of genes implicated in kidney glomerulus development and function,” EMBO Journal, vol. 25, no. 5, pp. 1160–1174, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Reiser, F. J. Pixley, A. Hug et al., “Regulation of mouse podocyte process dynamics by protein tyrosine phosphata ses,” Kidney International, vol. 57, no. 5, pp. 2035–2042, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Stuible, N. Dubé, and M. L. Tremblay, “PTP1B regulates cortactin tyrosine phosphorylation by targeting Tyr 446,” Journal of Biological Chemistry, vol. 283, no. 23, pp. 15740–15746, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. S. K. Sastry, Z. Rajfur, B. P. Liu, J. F. Cote, M. L. Tremblay, and K. Burridge, “PTP-PEST couples membrane protrusion and tail retraction via VAV2 and p190RhoGAP,” Journal of Biological Chemistry, vol. 281, no. 17, pp. 11627–11636, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. M. V. Hernández, M. G. Davies Sala, J. Balsamo, J. Lilien, and C. O. Arregui, “ER-bound PTP1B is targeted to newly forming cell-matrix adhesions,” Journal of Cell Science, vol. 119, no. 7, pp. 1233–1243, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. O. Attias, R. Jiang, L. Aoudjit, H. Kawachi, and T. Takano, “Rac1 contributes to actin organization in glomerular podocytes,” Nephron—Experimental Nephrology, vol. 114, no. 3, pp. e93–e106, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Zhu, O. Attias, L. Aoudjit, R. Jiang, H. Kawachi, and T. Takano, “p21-activated kinases regulate actin remodeling in glomerular podocytes,” American Journal of Physiology, vol. 298, no. 4, pp. F951–F961, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Charest, J. Wagner, S. H. Shen, and M. L. Tremblay, “Murine protein tyrosine phosphatase-PEST, a stable cytosolic protein tyrosine phosphatase,” Biochemical Journal, vol. 308, no. 2, pp. 425–432, 1995. View at Google Scholar · View at Scopus
  22. M. A. Chellaiah and M. D. Schaller, “Activation of Src kinase by protein-tyrosine phosphatase-PEST in osteoclasts: Comparative analysis of the effects of bisphosphonate and protein-tyrosine phosphatase inhibitor on Src activation in vitro,” Journal of Cellular Physiology, vol. 220, no. 2, pp. 382–393, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Gil-Henn and A. Elson, “Tyrosine phosphatase-ε activates Src and supports the transformed phenotype of Neu-induced mammary tumor cells,” Journal of Biological Chemistry, vol. 278, no. 18, pp. 15579–15586, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Zhu, J. D. Bjorge, and D. J. Fujita, “PTP1B contributes to the oncogenic properties of colon cancer cells through Src activation,” Cancer Research, vol. 67, no. 21, pp. 10129–10137, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. K. B. Kaplan, K. B. Bibbins, J. R. Swedlow, M. Arnaud, D. O. Morgan, and H. E. Varmus, “Association of the amino-terminal half of c-Src with focal adhesions alters their properties and is regulated by phosphorylation of tyrosine 527,” EMBO Journal, vol. 13, no. 20, pp. 4745–4756, 1994. View at Google Scholar · View at Scopus
  26. J. W. Pippin, P. T. Brinkkoetter, F. C. Cormack-Aboud et al., “Inducible rodent models of acquired podocyte diseases,” American Journal of Physiology, vol. 296, no. 2, pp. F213–F229, 2009. View at Publisher · View at Google Scholar · View at Scopus