Table of Contents
Journal of Signal Transduction
Volume 2012, Article ID 169170, 9 pages
http://dx.doi.org/10.1155/2012/169170
Review Article

MAP Kinases and Prostate Cancer

1Department of Cell Biology and Genetics, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain
2Department of Pathology, Príncipe de Asturias Hospital, Alcalá de Henares, 28806 Madrid, Spain

Received 15 June 2011; Accepted 15 August 2011

Academic Editor: Fred Schaper

Copyright © 2012 Gonzalo Rodríguez-Berriguete et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. McCubrey, M. M. LaHair, and R. A. Franklin, “Reactive oxygen species-induced activation of the MAP kinase signaling pathways,” Antioxidants and Redox Signaling, vol. 8, no. 9-10, pp. 1775–1789, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. B. N. Kholodenko and M. R. Birtwistle, “Four-dimensional dynamics of MAPK information processing systems,” Wiley Interdisciplinary Reviews. Systems Biology and Medicine, vol. 1, pp. 28–44, 2009. View at Google Scholar
  3. M. Hayashi and J. D. Lee, “Role of the BMK1/ERK5 signaling pathway: lessons from knockout mice,” Journal of Molecular Medicine, vol. 82, no. 12, pp. 800–808, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. M. R. Junttila, S. P. Li, and J. Westermarck, “Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival,” FASEB Journal, vol. 22, no. 4, pp. 954–965, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Shimada, M. Nakamura, E. Ishida, and N. Konishi, “Molecular roles of MAP kinases and FADD phosphorylation in prostate cancer,” Histology and Histopathology, vol. 21, no. 4–6, pp. 415–422, 2006. View at Google Scholar · View at Scopus
  6. S. S. Joo and Y. M. Yoo, “Melatonin induces apoptotic death in LNCaP cells via p38 and JNK pathways: therapeutic implications for prostate cancer,” Journal of Pineal Research, vol. 47, no. 1, pp. 8–14, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. P. K. Vayalil, A. Mittal, and S. K. Katiyar, “Proanthocyanidins from grape seeds inhibit expression of matrix metalloproteinases in human prostate carcinoma cells, which is associated with the inhibition of activation of MAPK and NF kappa B,” Carcinogenesis, vol. 25, no. 6, pp. 987–995, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. X. Zhang and C. Z. Kong, “The role of mitogen-activated protein kinase cascades in inhibition of proliferation in human prostate carcinoma cells by raloxifene: an in vitro experiment,” Zhonghua Yi Xue Za Zhi, vol. 88, no. 4, pp. 271–275, 2008. View at Google Scholar · View at Scopus
  9. F. S. Khwaja, E. J. Quann, N. Pattabiraman, S. Wynne, and D. Djakiew, “Carprofen induction of p75NTR-dependent apoptosis via the p38 mitogen-activated protein kinase pathway in prostate cancer cells,” Molecular Cancer Therapeutics, vol. 7, no. 11, pp. 3539–3545, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. H. L. Chang, Y. C. Wu, J. H. Su, Y. T. Yeh, and S. S. F. Yuan, “Protoapigenone, a novel flavonoid, induces apoptosis in human prostate cancer cells through activation of p38 mitogen-activated protein kinase and c-Jun NH2-terminal kinase 1/2,” Journal of Pharmacology and Experimental Therapeutics, vol. 325, no. 3, pp. 841–849, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Ricote, I. García-Tuñón, B. Fraile et al., “P38 MAPK protects against TNF-α-provoked apoptosis in LNCaP prostatic cancer cells,” Apoptosis, vol. 11, no. 11, pp. 1969–1975, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Rodríguez-Berriguete, B. Fraile, R. Paniagua, P. Aller, and M. Royuela, “Expression of NF-κB-related proteins and their modulation during TNF-α-provoked apoptosis in prostate cancer cells,” submitted to Prostate. View at Publisher · View at Google Scholar
  13. R. J. Davis, “Signal transduction by the JNK group of MAP kinases,” Cell, vol. 103, no. 2, pp. 239–252, 2000. View at Google Scholar · View at Scopus
  14. E. K. Kim and E. J. Choi, “Pathological roles of MAPK signaling pathways in human diseases,” Biochimica et Biophysica Acta, vol. 1802, no. 4, pp. 396–405, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. A. S. Dhillon, S. Hagan, O. Rath, and W. Kolch, “MAP kinase signalling pathways in cancer,” Oncogene, vol. 26, no. 22, pp. 3279–3290, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. B. B. Ancrile, K. M. O'Hayer, and C. M. Counter, “Oncogenic ras-induced expression of cytokines: a new target of anti-cancer therapeutics,” Molecular Interventions, vol. 8, no. 1, pp. 22–27, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. L. E. Heasley and S. Y. Han, “JNK regulation of oncogenesis,” Molecules and Cells, vol. 21, no. 2, pp. 167–173, 2006. View at Google Scholar · View at Scopus
  18. B. Derijard, M. Hibi, I. H. Wu et al., “JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain,” Cell, vol. 76, no. 6, pp. 1025–1037, 1994. View at Publisher · View at Google Scholar · View at Scopus
  19. M. A. Bogoyevitch, K. R. W. Ngoei, T. T. Zhao, Y. Y. C. Yeap, and D. C. H. Ng, “c-Jun N-terminal kinase (JNK) signaling: recent advances and challenges,” Biochimica et Biophysica Acta, vol. 1804, no. 3, pp. 463–475, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. A. M. Bode and Z. Dong, “The functional contrariety of JNK,” Molecular Carcinogenesis, vol. 46, no. 8, pp. 591–598, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Khalaf, J. Jass, and P. E. Olsson, “Differential cytokine regulation by NF-kappaB and AP-1 in Jurkat T-cells,” BMC Immunology, vol. 11, article 26, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. F. De Graeve, A. Bahr, K. T. Sabapathy et al., “Role of the ATFa/JNK2 complex in Jun activation,” Oncogene, vol. 18, no. 23, pp. 3491–3500, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. I. Sanchez, R. T. Hughes, B. J. Mayer et al., “Role of SAPK/ERK kinase-1 in the stress-activated pathway regulating transcription factor c-jun,” Nature, vol. 372, no. 6508, pp. 794–800, 1994. View at Google Scholar · View at Scopus
  24. S. Lawler, Y. Fleming, M. Goedert, and P. Cohen, “Synergistic activation of SAPK1/JNK1 by two MAP kinase kinases in vitro,” Current Biology, vol. 8, no. 25, pp. 1387–1390, 1998. View at Google Scholar · View at Scopus
  25. Y. Fleming, C. G. Armstrong, N. Morrice, A. Paterson, M. Goedert, and P. Cohen, “Synergistic activation of stress-activated protein kinase 1/c-Jun N-terminal kinase (SAPK1/JNK) isoforms by mitogen-activated protein kinase kinase 4 (MKK4) and MKK7,” Biochemical Journal, vol. 352, no. 1, pp. 145–154, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Wada, K. Nakagawa, T. Watanabe et al., “Impaired synergistic activation of stress-activated protein kinase SAPK/JNK in mouse embryonic stem cells lacking SEK1/MKK4,” Journal of Biological Chemistry, vol. 276, no. 33, pp. 30892–30897, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. X. Wang, B. Nadarajah, A. C. Robinson et al., “Targeted deletion of the mitogen-activated protein kinase kinase 4 gene in the nervous system causes severe brain developmental defects and premature death,” Molecular and Cellular Biology, vol. 27, no. 22, pp. 7935–7946, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Tournier, C. Dong, T. K. Turner, S. N. Jones, R. A. Flavell, and R. J. Davis, “MKK7 is an essential component of the JNK signal transduction pathway activated by proinflammatory cytokines,” Genes and Development, vol. 15, no. 11, pp. 1419–1426, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. A. G. Turjanski, J. P. Vaqué, and J. S. Gutkind, “MAP kinases and the control of nuclear events,” Oncogene, vol. 26, no. 22, pp. 3240–3253, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Royuela, M. I. Arenas, F. R. Bethencourt, B. Fraile, and R. Paniagua, “Regulation of proliferation/apoptosis equilibrium by mitogen-activated protein kinases in normal, hyperplastic, and carcinomatous human prostate,” Human Pathology, vol. 33, no. 3, pp. 299–306, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Meshki, M. C. Caino, V. A. von Burstin, E. Griner, and M. G. Kazanietz, “Regulation of prostate cancer cell survival by protein kinase Cε involves bad phosphorylation and modulation of the TNFα/JNK pathway,” Journal of Biological Chemistry, vol. 285, no. 34, pp. 26033–26040, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Y. Wang, Z. Cheng, and C. C. Malbon, “Overexpression of mitogen-activated protein kinase phosphatases MKP1, MKP2 in human breast cancer,” Cancer Letters, vol. 191, no. 2, pp. 229–237, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Wang, I. Kuiatse, A. V. Lee, J. Pan, A. Giuliano, and X. Cui, “Sustained c-Jun-NH2-kinase activity promotes epithelial-mesenchymal transition, invasion, and survival of breast cancer cells by regulating extracellular signal-regulated kinase activation,” Molecular Cancer Research, vol. 8, no. 2, pp. 266–277, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. G. H. Su, W. Hilgers, M. C. Shekher et al., “Alterations in pancreatic, biliary, and breast carcinomas support MKK4 as a genetically targeted tumor suppressor gene,” Cancer Research, vol. 58, no. 11, pp. 2339–2342, 1998. View at Google Scholar · View at Scopus
  35. J. J. Lee, J. H. Lee, Y. G. Ko, S. I. Hong, and J. S. Lee, “Prevention of premature senescence requires JNK regulation of Bcl-2 and reactive oxygen species,” Oncogene, vol. 29, no. 4, pp. 561–575, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. O. Potapova, M. Gorospe, F. Bost et al., “c-Jun N-terminal kinase is essential for growth of human T98G glioblastoma cells,” Journal of Biological Chemistry, vol. 275, no. 32, pp. 24767–24775, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. N. Chen, M. Nomura, Q. B. She et al., “Suppression of skin tumorigenesis in c-Jun NH(2)-terminal kinase-2-deficient mice,” Cancer Research, vol. 61, no. 10, pp. 3908–3912, 2001. View at Google Scholar · View at Scopus
  38. Q. B. She, N. Chen, A. M. Bode, R. A. Flavell, and Z. Dong, “Deficiency of c-Jun-NH(2)-terminal kinase-1 in mice enhances skin tumor development by 12-O-tetradecanoylphorbol-13-acetate,” Cancer Research, vol. 62, no. 5, pp. 1343–1348, 2002. View at Google Scholar · View at Scopus
  39. H. Takahashi, H. Ogata, R. Nishigaki, D. H. Broide, and M. Karin, “Tobacco smoke promotes lung tumorigenesis by triggering IKKbeta- and JNK1-dependent inflammation,” Cancer Cell, vol. 17, no. 1, pp. 89–97, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Magi-Galluzzi, R. Mishra, M. Fiorentino et al., “Mitogen-activated protein kinase phosphatase 1 is overexpressed in prostate cancers and is inversely related to apoptosis,” Laboratory Investigation, vol. 76, no. 1, pp. 37–51, 1997. View at Google Scholar · View at Scopus
  41. A. R. Uzgare, P. J. Kaplan, and N. M. Greenberg, “Differential expression and/or activation of p38MAPK, erk1/2, and jnk during the initiation and progression of prostate cancer,” Prostate, vol. 55, no. 2, pp. 128–139, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. R. L. Grubb, J. Deng, P. A. Pinto et al., “Pathway biomarker profiling of localized and metastatic human prostate cancer reveal metastatic and prognostic signatures,” Journal of Proteome Research, vol. 8, no. 6, pp. 3044–3054, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. W. N. Yap, P. N. Chang, H. Y. Han et al., “γ-tocotrienol suppresses prostate cancer cell proliferation and invasion through multiple-signalling pathways,” The British Journal of Cancer, vol. 99, no. 11, pp. 1832–1841, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Watanabe, H. Nishiyama, Y. Matsui et al., “Dicoumarol potentiates cisplatin-induced apoptosis mediated by c-Jun N-terminal kinase in p53 wild-type urogenital cancer cell lines,” Oncogene, vol. 25, no. 17, pp. 2500–2508, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. W. L. Chang, C. S. Chang, P. C. Chiang et al., “2-Phenyl-5-(pyrrolidin-1-yl)-1-(3,4,5-trimethoxybenzyl)-1H-benzimidazole, a benzimidazole derivative, inhibits growth of human prostate cancer cells by affecting tubulin and c-Jun N-terminal kinase,” The British Journal of Pharmacology, vol. 160, no. 7, pp. 1677–1689, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. Y. R. Chen, J. Han, R. Kori, A. N. Tony Kong, and T. H. Tan, “Phenylethyl isothiocyanate induces apoptotic signaling via suppressing phosphatase activity against c-Jun N-terminal kinase,” Journal of Biological Chemistry, vol. 277, no. 42, pp. 39334–39342, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. C. Xu, G. Shen, X. Yuan et al., “ERK and JNK signaling pathways are involved in the regulation of activator protein 1 and cell death elicited by three isothiocyanates in human prostate cancer PC-3 cells,” Carcinogenesis, vol. 27, no. 3, pp. 437–445, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. P. I. Lorenzo and F. Saatcioglu, “Inhibition of apoptosis in prostate cancer cells by androgens is mediated through downregulation of c-Jun N-terminal kinase activation,” Neoplasia, vol. 10, no. 5, pp. 418–428, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Antosiewicz, W. Ziolkowski, J. J. Kaczor, and A. Herman-Antosiewicz, “Tumor necrosis factor-α-induced reactive oxygen species formation is mediated by JNK1-dependent ferritin ç degradation and elevation of labile iron pool,” Free Radical Biology and Medicine, vol. 43, no. 2, pp. 265–270, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. A. M. Sánchez, S. Malagarie-Cazenave, N. Olea, D. Vara, A. Chiloeches, and I. Díaz-Laviada, “Apoptosis induced by capsaicin in prostate PC-3 cells involves ceramide accumulation, neutral sphingomyelinase, and JNK activation,” Apoptosis, vol. 12, no. 11, pp. 2013–2024, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. S. V. Singh, S. Choi, Y. Zeng, E. R. Hahm, and D. Xiao, “Guggulsterone-induced apoptosis in human prostate cancer cells is caused by reactive oxygen intermediate dependent activation of c-Jun NH2-terminal kinase,” Cancer Research, vol. 67, no. 15, pp. 7439–7449, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. H. Y. Hong and B. C. Kim, “Mixed lineage kinase 3 connects reactive oxygen species to c-Jun NH2-terminal kinase-induced mitochondrial apoptosis in genipin-treated PC3 human prostate cancer cells,” Biochemical and Biophysical Research Communications, vol. 362, no. 2, pp. 307–312, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Yang, M. Lim, L. K. Pham et al., “Bone morphogenetic protein 7 protects prostate cancer cells from stress-induced apoptosis via both Smad and c-Jun NH2-terminal kinase pathways,” Cancer Research, vol. 66, no. 8, pp. 4285–4290, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. J. F. Curtin and T. G. Cotter, “JNK regulates HIPK3 expression and promotes resistance to Fas-mediated apoptosis in DU 145 prostate carcinoma cells,” Journal of Biological Chemistry, vol. 279, no. 17, pp. 17090–17100, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. H. Yun, H. S. Kim, S. Lee et al., “AMP kinase signaling determines whether c-Jun N-terminal kinase promotes survival or apoptosis during glucose deprivation,” Carcinogenesis, vol. 30, no. 3, pp. 529–537, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. G. T. Kwon, H. J. Cho, W. Y. Chung, K. K. Park, A. Moon, and J. H. Y. Park, “Isoliquiritigenin inhibits migration and invasion of prostate cancer cells: possible mediation by decreased JNK/AP-1 signaling,” Journal of Nutritional Biochemistry, vol. 20, no. 9, pp. 663–676, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. S. H. Hung, K. H. Shen, C. H. Wu, C. L. Liu, and Y. W. Shih, “α-mangostin suppresses PC-3 human prostate carcinoma cell metastasis by inhibiting matrix metalloproteinase-2/9 and urokinase-plasminogen expression through the JNK signaling pathway,” Journal of Agricultural and Food Chemistry, vol. 57, no. 4, pp. 1291–1298, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. C. S. Chien, K. H. Shen, J. S. Huang, S. C. Ko, and Y. W. Shih, “Antimetastatic potential of fisetin involves inactivation of the PI3K/Akt and JNK signaling pathways with downregulation of MMP-2/9 expressions in prostate cancer PC-3 cells,” Molecular and Cellular Biochemistry, vol. 333, no. 1-2, pp. 169–180, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. J. Raingeaud, S. Gupta, J. S. Rogers et al., “Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine,” Journal of Biological Chemistry, vol. 270, no. 13, pp. 7420–7426, 1995. View at Publisher · View at Google Scholar · View at Scopus
  60. L. Hui, L. Bakiri, E. Stepniak, and E. F. Wagner, “p38α: a suppressor of cell proliferation and tumorigenesis,” Cell Cycle, vol. 6, no. 20, pp. 2429–2433, 2007. View at Google Scholar · View at Scopus
  61. T. M. Thornton and M. Rincon, “Non-classical p38 map kinase functions: cell cycle checkpoints and survival,” International Journal of Biological Sciences, vol. 5, no. 1, pp. 44–51, 2009. View at Google Scholar · View at Scopus
  62. Y. Jiang, Z. Li, E. M. Schwarz et al., “Structure-function studies of p38 mitogen-activated protein kinase. Loop 12 influences substrate specificity and autophosphorylation, but not upstream kinase selection,” Journal of Biological Chemistry, vol. 272, no. 17, pp. 11096–11102, 1997. View at Publisher · View at Google Scholar · View at Scopus
  63. X. S. Wang, K. Diener, C. L. Manthey et al., “Molecular cloning and characterization of a novel p38 mitogen-activated protein kinase,” Journal of Biological Chemistry, vol. 272, no. 38, pp. 23668–23674, 1997. View at Publisher · View at Google Scholar · View at Scopus
  64. Y. Feng, J. Wen, and C. C. Chang, “p38 mitogen-activated protein kinase and hematologic malignancies,” Archives of Pathology and Laboratory Medicine, vol. 133, no. 11, pp. 1850–1856, 2009. View at Google Scholar · View at Scopus
  65. J. Whyte, O. Bergin, A. Bianchi, S. McNally, and F. Martin, “Key signalling nodes in mammary gland development and cancer. Mitogen-activated protein kinase signalling in experimental models of breast cancer progression and in mammary gland development,” Breast Cancer Research, vol. 11, no. 5, p. 209, 2009. View at Google Scholar · View at Scopus
  66. M. Zhao, L. New, V. V. Kravchenko et al., “Regulation of the MEF2 family of transcription factors by p38,” Molecular and Cellular Biology, vol. 19, no. 1, pp. 21–30, 1999. View at Google Scholar · View at Scopus
  67. M. Royuela, G. Rodríguez-Berriguete, B. Fraile, and R. Paniagua, “TNF-α/IL-1/NF-κB transduction pathway in human cancer prostate,” Histology and Histopathology, vol. 23, no. 10, pp. 1279–1290, 2008. View at Google Scholar · View at Scopus
  68. C. D. Wood, T. M. Thornton, G. Sabio, R. A. Davis, and M. Rincon, “Nuclear localization of p38 MAPK in response to DNA damage,” International Journal of Biological Sciences, vol. 5, no. 5, pp. 428–437, 2009. View at Google Scholar · View at Scopus
  69. B. Zheng, P. Flumara, Y. V. Li et al., “MEK/ERK pathway is aberrantly active in Hodgkin disease: a signaling pathway shared by CD30, CD40, and RANK that regulates cell proliferation and survival,” Blood, vol. 102, no. 3, pp. 1019–1027, 2003. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Ricote, I. García-Tuñón, F. Bethencourt et al., “The p38 transduction pathway in prostatic neoplasia,” Journal of Pathology, vol. 208, no. 3, pp. 401–407, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. X. Guo, N. Ma, J. Wang et al., “Increased p38-MAPK is responsible for chemotherapy resistance in human gastric cancer cells,” BMC cancer, vol. 8, p. 375, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. C. Zhang, H. Zhu, X. Yang et al., “P53 and p38 MAPK pathways are involved in MONCPT-induced cell cycle G2/M arrest in human non-small cell lung cancer A549,” Journal of Cancer Research and Clinical Oncology, vol. 136, no. 3, pp. 437–445, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. D. L. Lin, M. C. Whitney, Z. Yao, and E. T. Keller, “Interleukin-6 induces androgen responsiveness in prostate cancer cells through up-regulation of androgen receptor expression,” Clinical Cancer Research, vol. 7, no. 6, pp. 1773–1781, 2001. View at Google Scholar · View at Scopus
  74. L. Khandrika, R. Lieberman, S. Koul et al., “Hypoxia-associated p38 mitogen-activated protein kinase-mediated androgen receptor activation and increased HIF-1α levels contribute to emergence of an aggressive phenotype in prostate cancer,” Oncogene, vol. 28, no. 9, pp. 1248–1260, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. X. Huang, S. Chen, L. Xu et al., “Genistein inhibits p38 map kinase activation, matrix metalloproteinase type 2, and cell invasion in human prostate epithelial cells,” Cancer Research, vol. 65, no. 8, pp. 3470–3478, 2005. View at Google Scholar · View at Scopus
  76. K. H. Shen, S. H. Hung, L. T. Yin et al., “Acacetin, a flavonoid, inhibits the invasion and migration of human prostate cancer DU145 cells via inactivation of the p38 MAPK signaling pathway,” Molecular and Cellular Biochemistry, vol. 333, no. 1-2, pp. 279–291, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. L. Xu, Y. Ding, W. J. Catalona et al., “MEK4 function, genistein treatment, and invasion of human prostate cancer cells,” Journal of the National Cancer Institute, vol. 101, no. 16, pp. 1141–1155, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. C. H. Tang and M. E. Lu, “Adiponectin increases motility of human prostate cancer cells via AdipoR, p38, AMPK, and NF-κB pathways,” Prostate, vol. 69, no. 16, pp. 1781–1789, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. T. Hunter, “Signaling—2000 and beyond,” Cell, vol. 100, no. 1, pp. 113–127, 2000. View at Google Scholar · View at Scopus
  80. Y. Liu, L. Formisano, I. Savtchouk et al., “A single fear-inducing stimulus induces a transcription-dependent switch in synaptic AMPAR phenotype,” Nature Neuroscience, vol. 13, no. 2, pp. 223–231, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. R. Marais and C. J. Marshall, “Control of the ERK MAP kinase cascade by ras and raf,” Cancer Surveys, vol. 27, pp. 101–125, 1996. View at Google Scholar · View at Scopus
  82. S. Peng, Y. Zhang, J. Zhang, H. Wang, and B. Ren, “ERK in learning and memory: a review of recent research,” International Journal of Molecular Sciences, vol. 11, no. 1, pp. 222–232, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. G. Pearson, F. Robinson, T. B. Gibson et al., “Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions,” Endocrine Reviews, vol. 22, no. 2, pp. 153–183, 2001. View at Publisher · View at Google Scholar · View at Scopus
  84. G. Pagès, J. Milanini, D. E. Richard et al., “Signaling angiogenesis via p42/p44 MAP kinase cascade,” Annals of the New York Academy of Sciences, vol. 902, pp. 187–200, 2000. View at Google Scholar · View at Scopus
  85. E. J. Joslin, L. K. Opresko, A. Wells, H. S. Wiley, and D. A. Lauffenburger, “EGF-receptor-mediated mammary epithelial cell migration is driven by sustained ERK signaling from autocrine stimulation,” Journal of Cell Science, vol. 120, no. 20, pp. 3688–3699, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. D. J. Price, S. Avraham, J. Feuerstein, Y. Fu, and H. K. Avraham, “The invasive phenotype in HMT-3522 cells requires increased EGF receptor signaling through both PI 3-kinase and ERK 1,2 pathways,” Cell Communication and Adhesion, vol. 9, no. 2, pp. 87–102, 2002. View at Google Scholar · View at Scopus
  87. P. J. Cullen and P. J. Lockyer, “Integration of calcium and Ras signalling,” Nature Reviews Molecular Cell Biology, vol. 3, no. 5, pp. 339–348, 2002. View at Publisher · View at Google Scholar · View at Scopus
  88. D. A. Eisinger and H. Ammer, “δ-opioid receptors activate ERK/MAP kinase via integrin-stimulated receptor tyrosine kinases,” Cellular Signalling, vol. 20, pp. 2324–2331, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. L. Gao, L. Chao, and J. Chao, “A novel signaling pathway of tissue kallikrein in promoting keratinocyte migration: activation of proteinase-activated receptor 1 and epidermal growth factor receptor,” Experimental Cell Research, vol. 316, no. 3, pp. 376–389, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. A. Zebisch, A. P. Czernilofsky, G. Keri, J. Smigelskaite, H. Sill, and J. Troppmair, “Signaling through RAS-RAF-MEK-ERK: from basics to bedside,” Current Medicinal Chemistry, vol. 14, no. 5, pp. 601–623, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. J. S. Silver and C. A. Hunter, “gp130 at the nexus of inflammation, autoimmunity, and cancer,” Journal of Leukocyte Biology, vol. 88, no. 6, pp. 1145–1156, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. G. Werlen, B. Hausmann, D. Naeher, and E. Palmer, “Signaling life and death in the thymus: timing is everything,” Science, vol. 299, no. 5614, pp. 1859–1863, 2003. View at Publisher · View at Google Scholar · View at Scopus
  93. N. Thakur, A. Sorrentino, C. H. Heldin, and M. Landström, “TGF-β uses the E3-ligase TRAF6 to turn on the kinase TAK1 to kill prostate cancer cells,” Future Oncology, vol. 5, no. 1, pp. 1–3, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. K. J. Wilson, J. L. Gilmore, J. Foley, M. A. Lemmon, and D. J. Riese, “Functional selectivity of EGF family peptide growth factors: implications for cancer,” Pharmacology and Therapeutics, vol. 122, no. 1, pp. 1–8, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. M. P. De Miguel, M. Royuela, F. R. Bethencourt, L. Santamaria, B. Fraile, and R. Paniagua, “Immuno-expression of tumor necrosis factor-a and its receptors 1 and 2 correlates with proliferation/apoptosis equilibrium in normal, hyperplasic and carcinomatous human prostate,” Cytokine, vol. 5, pp. 535–538, 2000. View at Google Scholar
  96. M. Royuela, M. P. De Miguel, F. R. Bethencourt, M. Sanchez-Chapado, B. Fraile, and R. Paniagua, “Transforming growth factor β1 and its receptor types I and II. Comparison in human normal prostate, benign prostatic hyperplasia, and prostatic carcinoma,” Growth Factors, vol. 16, no. 2, pp. 101–110, 1998. View at Google Scholar · View at Scopus
  97. I. Leav, J. E. McNeal, J. Ziar, and J. Alroy, “The localization of transforming growth factor alpha and epidermal growth factor receptor in stromal and epithelial compartments of developing human prostate and hyperplastic, dysplastic, and carcinomatous lesions,” Human Pathology, vol. 29, no. 7, pp. 668–675, 1998. View at Publisher · View at Google Scholar · View at Scopus
  98. M. R. Cardillo, E. Petrangeli, L. Perracchio, L. Salvatori, L. Ravenna, and F. Di Silverio, “Transforming growth factor-beta expression in prostate neoplasia,” Analytical & Quantitative Cytology & Histology, vol. 22, pp. 1–10, 2000. View at Google Scholar
  99. N. Eckstein, K. Servan, L. Girard et al., “Epidermal growth factor receptor pathway analysis identifies amphiregulin as a key factor for cisplatin resistance of human breast cancer cells,” Journal of Biological Chemistry, vol. 283, no. 2, pp. 739–750, 2008. View at Publisher · View at Google Scholar · View at Scopus
  100. T. Putz, Z. Culig, I. E. Eder et al., “Epidermal growth factor (EGF) receptor blockade inhibits the action of EGF, insulin-like growth factor I, and a protein kinase A activator on the mitogen-activated protein kinase pathway in prostate cancer cell lines,” Cancer Research, vol. 59, no. 1, pp. 227–233, 1999. View at Google Scholar · View at Scopus
  101. P. L. De Souza, M. Castillo, and C. E. Myers, “Enhancement of paclitaxel activity against hormone-refractory prostate cancer cells in vitro and in vivo by quinacrine,” The British Journal of Cancer, vol. 75, no. 11, pp. 1593–1600, 1997. View at Google Scholar · View at Scopus
  102. H. Y. Chang, H. Nishitoh, X. Yang, H. Ichijo, and D. Baltimore, “Activation of apoptosis signal-regulating kinase 1 (ASK1) by the adapter protein Daxx,” Science, vol. 281, no. 5384, pp. 1860–1863, 1998. View at Publisher · View at Google Scholar · View at Scopus
  103. M. Dews, M. Prisco, F. Peruzzi, G. Romano, A. Morrione, and R. Baserga, “Domains of the insulin-like growth factor I receptor required for the activation of extracellular signal-regulated kinases,” Endocrinology, vol. 141, no. 4, pp. 1289–1300, 2000. View at Publisher · View at Google Scholar · View at Scopus
  104. G. Rodriguez-Berriguete, A. Prieto, B. Fraile et al., “Relationship between IL-6/ERK and NF-?B: a study in normal and pathological human prostate gland (benign hyperplasia, intraepithelial neoplasia and cancer),” European Cytokine Network, vol. 21, no. 4, pp. 241–250, 2010. View at Google Scholar
  105. J. A. McCubrey, L. S. Steelman, W. H. Chappell et al., “Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance,” Biochim Biophys Acta, vol. 1773, pp. 1263–1284, 2007. View at Google Scholar
  106. S. Grant, “Cotargeting survival signaling pathways in cancer,” Journal of Clinical Investigation, vol. 118, no. 9, pp. 3003–3006, 2008. View at Publisher · View at Google Scholar · View at Scopus
  107. H. Mueller, N. Flury, S. Eppenberger-Castori, W. Kueng, F. David, and U. Eppenberger, “Potential prognostic value of mitogen-activated protein kinase activity for disease-free survival of primary breast cancer patients,” International Journal of Cancer, vol. 89, no. 4, pp. 384–388, 2000. View at Publisher · View at Google Scholar · View at Scopus
  108. S. Schubbert, K. Shannon, and G. Bollag, “Hyperactive ras in developmental disorders and cancer,” Nature Reviews Cancer, vol. 7, no. 4, pp. 295–308, 2007. View at Publisher · View at Google Scholar · View at Scopus
  109. E. Halilovic and D. B. Solit, “Therapeutic strategies for inhibiting oncogenic BRAF signaling,” Current Opinion in Pharmacology, vol. 8, no. 4, pp. 419–426, 2008. View at Publisher · View at Google Scholar · View at Scopus
  110. E. T. Keller, Z. Fu, K. Yeung, and M. Brennan, “Raf kinase inhibitor protein: a prostate cancer metastasis suppressor gene,” Cancer Letters, vol. 207, no. 2, pp. 131–137, 2004. View at Publisher · View at Google Scholar · View at Scopus
  111. B. Wegiel, A. Bjartell, Z. Culig, and J. L. Persson, “Interleukin-6 activates PI3K/Akt pathway and regulates cyclin A1 to promote prostate cancer cell survival,” International Journal of Cancer, vol. 122, no. 7, pp. 1521–1529, 2008. View at Publisher · View at Google Scholar · View at Scopus
  112. J. Karkera, H. Steiner, W. Li et al., “The anti-interleukin-6 antibody siltuximab down-regulates genes implicated in tumorigenesis in prostate cancer patients from a phase I study,” Prostate, vol. 71, pp. 1455–1465, 2011. View at Google Scholar
  113. H. Steiner, S. Godoy-Tundidor, H. Rogatsch et al., “Accelerated in vivo growth of prostate tumors that up-regulate interleukin-6 is associated with reduced retinoblastoma protein expression and activation of the mitogen-activated protein kinase pathway,” The American Journal of Pathology, vol. 162, no. 2, pp. 655–663, 2003. View at Google Scholar · View at Scopus
  114. C. P. Pjaweletz, L. Charboneau, V. E. Bichsel et al., “Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front,” Oncogene, vol. 20, no. 16, pp. 1981–1989, 2001. View at Publisher · View at Google Scholar · View at Scopus
  115. S. N. Malik, M. Brattain, P. M. Ghosh et al., “Immunohistochemical demonstration of phospho-Akt in high Gleason grade prostate cancer,” Clinical Cancer Research, vol. 8, no. 4, pp. 1168–1171, 2002. View at Google Scholar · View at Scopus
  116. D. Gioeli, J. W. Mandell, G. R. Petroni, H. F. Frierson, and M. J. Weber, “Activation of mitogen-activated protein kinase associated with prostate cancer progression,” Cancer Research, vol. 59, no. 2, pp. 279–284, 1999. View at Google Scholar · View at Scopus
  117. M. E. Grossmann, H. Huang, and D. J. Tindall, “Androgen receptor signaling in androgen-refractory prostate cancer,” Journal of the National Cancer Institute, vol. 93, no. 22, pp. 1687–1697, 2001. View at Google Scholar · View at Scopus
  118. Y. Zhu, C. Culmsee, S. Klumpp, and J. Krieglstein, “Neuroprotection by transforming growth factor-β1 involves activation of nuclear factor-κB through phosphatidylinositol-3-OH kinase/Akt and mitogen-activated protein kinase-extracellular-signal regulated kinase1,2 signaling pathways,” Neuroscience, vol. 123, no. 4, pp. 897–906, 2004. View at Publisher · View at Google Scholar · View at Scopus
  119. L. F. Chu, W. T. Wang, V. K. Ghanta, C. H. Lin, Y. Y. Chiang, and C. M. Hsueh, “Ischemic brain cell-derived conditioned medium protects astrocytes against ischemia through GDNF/ERK/NF-κB signaling pathway,” Brain Research, vol. 1239, pp. 24–35, 2008. View at Publisher · View at Google Scholar · View at Scopus
  120. M. Karin, “Nuclear factor-κB in cancer development and progression,” Nature, vol. 441, no. 7092, pp. 431–436, 2006. View at Publisher · View at Google Scholar · View at Scopus
  121. G. Rodriguez-Berriguete, B. Fraile, F. R. de Bethencourt et al., “Role of IAPs in prostate cancer progression: immunohistochemical study in normal and pathological (benign hyperplastic, prostatic intraepithelial neoplasia and cancer) human prostate,” BMC Cancer, vol. 10, p. 18, 2010. View at Google Scholar
  122. B. B. Aggarwal, “Tumour necrosis factors receptor associated signalling molecules and their role in activation of apoptosis, JNK and NF-κB,” Annals of the Rheumatic Diseases, vol. 59, no. 1, pp. i6–i16, 2000. View at Google Scholar · View at Scopus
  123. J. D. Lee, R. J. Ulevitch, and J. Han, “Primary structure of BMK1: a new mammalian map kinase,” Biochemical and Biophysical Research Communications, vol. 213, pp. 715–724, 1995. View at Google Scholar
  124. G. Zhou, Zhao Qin Bao, and J. E. Dixon, “Components of a new human protein kinase signal transduction pathway,” Journal of Biological Chemistry, vol. 270, no. 21, pp. 12665–12669, 1995. View at Google Scholar · View at Scopus
  125. Y. Kato, R. I. Tapping, S. Huang, M. H. Watson, R. J. Ulevitch, and J. D. Lee, “Bmk1/Erk5 is required for cell proliferation induced by epidermal growth factor,” Nature, vol. 395, no. 6703, pp. 713–716, 1998. View at Publisher · View at Google Scholar · View at Scopus
  126. R. S. Sawhney, W. Liu, and M. G. Brattain, “A novel role of ERK5 in integrin-mediated cell adhesion and motility in cancer cells via Fak signaling,” Journal of Cellular Physiology, vol. 219, no. 1, pp. 152–161, 2009. View at Publisher · View at Google Scholar · View at Scopus
  127. M. Kayahara, X. Wang, and C. Tournier, “Selective regulation of c-jun gene expression by mitogen-activated protein kinases via the 12-o-tetradecanoylphorbol-13-acetate-responsive element and myocyte enhancer factor 2 binding sites,” Molecular and Cellular Biology, vol. 25, no. 9, pp. 3784–3792, 2005. View at Publisher · View at Google Scholar · View at Scopus
  128. S. Kamakura, T. Moriguchi, and E. Nishida, “Activation of the protein kinase ERK5/BMK1 by receptor tyrosine kinases. Identification and characterization of a signalling pathway to the nucleus,” Journal of Biological Chemistry, vol. 274, no. 37, pp. 26563–26571, 1999. View at Publisher · View at Google Scholar · View at Scopus
  129. Y. Kato, V. V. Kravchenko, R. I. Tapping, J. Han, R. J. Ulevitch, and J. D. Lee, “BMK1/ERK5 regulates serum-induced early gene expression through transcription factor MEF2C,” EMBO Journal, vol. 16, no. 23, pp. 7054–7066, 1997. View at Google Scholar · View at Scopus
  130. J. M. English, G. Pearson, R. Baer, and M. H. Cobb, “Identification of substrates and regulators of the mitogen-activated protein kinase ERK5 using chimeric protein kinases,” Journal of Biological Chemistry, vol. 273, no. 7, pp. 3854–3860, 1998. View at Publisher · View at Google Scholar · View at Scopus
  131. S. R. C. McCracken, A. Ramsay, R. Heer et al., “Aberrant expression of extracellular signal-regulated kinase 5 in human prostate cancer,” Oncogene, vol. 27, no. 21, pp. 2978–2988, 2008. View at Publisher · View at Google Scholar · View at Scopus