Table of Contents
Journal of Signal Transduction
Volume 2012 (2012), Article ID 210324, 6 pages
http://dx.doi.org/10.1155/2012/210324
Research Article

Dopamine D 2 Receptor-Mediated Heterologous Sensitization of AC5 Requires Signalosome Assembly

1Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907-2051, USA
2Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
3Department of Pharmacology Therapeutics, McGill University, McIntyre Medical Sciences Building, Montréal, QC, Canada H3G 1Y6

Received 7 October 2011; Accepted 28 December 2011

Academic Editor: J. Adolfo García-Sáinz

Copyright © 2012 Karin F. K. Ejendal et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. D. Iversen and L. L. Iversen, “Dopamine: 50 years in perspective,” Trends in Neurosciences, vol. 30, no. 5, pp. 188–193, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Le Foll, A. Gallo, Y. L. Strat, L. Lu, and P. Gorwood, “Genetics of dopamine receptors and drug addiction: a comprehensive review,” Behavioural Pharmacology, vol. 20, no. 1, pp. 1–17, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. J.-M. Beaulieu and R. R. Gainetdinov, “The physiology, signaling, and pharmacology of dopamine receptors,” Pharmacological Reviews, vol. 63, no. 1, pp. 182–217, 2011. View at Publisher · View at Google Scholar
  4. V. J. Watts and K. A. Neve, “Sensitization of adenylate cyclase by Gαi/o-coupled receptors,” Pharmacology and Therapeutics, vol. 106, no. 3, pp. 405–421, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. J. A. Chester, A. J. Mullins, C. H. Nguyen, V. J. Watts, and R. L. Meisel, “Repeated quinpirole treatments produce neurochemical sensitization and associated behavioral changes in female hamsters,” Psychopharmacology, vol. 188, no. 1, pp. 53–62, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. K. E. Culm, A. M. Lim, J. A. Onton, and R. P. Hammer, “Reduced Gi and Go protein function in the rat nucleus accumbens attenuates sensorimotor gating deficits,” Brain Research, vol. 982, no. 1, pp. 12–18, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. S. K. Sharma, W. A. Klee, and M. Nirenberg, “Dual regulation of adenylate cyclase accounts for narcotic dependence and tolerance,” Proceedings of the National Academy of Sciences of the United States of America, vol. 72, no. 8, pp. 3092–3096, 1975. View at Google Scholar · View at Scopus
  8. X. Gao, R. Sadana, C. W. Dessauer, and T. B. Patel, “Conditional stimulation of type V and VI adenylyl cyclases by G protein βγ subunits,” Journal of Biological Chemistry, vol. 282, no. 1, pp. 294–302, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. K. W. Lee, J. H. Hong, I. Y. Choi et al., “Impaired D2 dopamine receptor function in mice lacking type 5 adenylyl cyclase,” Journal of Neuroscience, vol. 22, no. 18, pp. 7931–7940, 2002. View at Google Scholar · View at Scopus
  10. T. Iwamoto, S. Okumura, K. Iwatsubo et al., “Motor dysfunction in type 5 adenylyl cyclase-null mice,” Journal of Biological Chemistry, vol. 278, no. 19, pp. 16936–16940, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Bastepe, Y. Gunes, B. Perez-Villamil, J. Hunzelman, L. S. Weinstein, and H. Jüppner, “Receptor-mediated adenylyl cyclase activation through XLαs, the extra-large variant of the stimulatory G protein α-subunit,” Molecular Endocrinology, vol. 16, no. 8, pp. 1912–1919, 2002. View at Publisher · View at Google Scholar
  12. T. A. Vortherms, C. H. Nguyen, M. Bastepe, H. Jüppner, and V. J. Watts, “D2 dopamine receptor-induced sensitization of adenylyl cyclase type 1 is Gαs independent,” Neuropharmacology, vol. 50, no. 5, pp. 576–584, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. P. B. Wedegaertner, D. H. Chu, P. T. Wilson, M. J. Levis, and H. R. Bourne, “Palmitoylation is required for signaling functions and membrane attachment of G(q)α and G(s)α,” Journal of Biological Chemistry, vol. 268, no. 33, pp. 25001–25008, 1993. View at Google Scholar · View at Scopus
  14. D. S. Evanko, M. M. Thiyagarajan, D. P. Siderovski, and P. B. Wedegaertner, “Gβγ isoforms selectively rescue plasma membrane localization and palmitoylation of mutant Gαs and Gαq,” Journal of Biological Chemistry, vol. 276, no. 26, pp. 23945–23953, 2001. View at Publisher · View at Google Scholar
  15. D. J. Dupré, M. Robitaille, R. V. Rebois, and T. E. Hébert, “The role of Gβγ subunits in the organization, assembly, and function of GPCR signaling complexes,” Annual Review of Pharmacology and Toxicology, vol. 49, pp. 31–56, 2009. View at Publisher · View at Google Scholar
  16. P. Crespo, T. G. Cachero, N. Xu, and J. S. Gutkind, “Dual effect of β-adrenergic receptors on mitogen-activated protein kinase. Evidence for a βγ-dependent activation and a Gα(s)-cAMP-mediated inhibition,” Journal of Biological Chemistry, vol. 270, no. 42, pp. 25259–25265, 1995. View at Publisher · View at Google Scholar
  17. D. J. Dupré, M. Robitaille, N. Éthier, L. R. Villeneuve, A. M. Mamarbachi, and T. E. Hébert, “Seven transmembrane receptor core signaling complexes are assembled prior to plasma membrane trafficking,” Journal of Biological Chemistry, vol. 281, no. 45, pp. 34561–34573, 2006. View at Publisher · View at Google Scholar
  18. R. Sadana, N. Dascal, and C. W. Dessauer, “N terminus of type 5 adenylyl cyclase scaffolds Gs heterotrimer,” Molecular Pharmacology, vol. 76, no. 6, pp. 1256–1264, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Robitaille, N. Ramakrishnan, A. Baragli, and T. E. Hébert, “Intracellular trafficking and assembly of specific Kir3 channel/G protein complexes,” Cellular Signalling, vol. 21, no. 4, pp. 488–501, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. T. R. Hynes, S. M. Mervine, E. A. Yost, J. L. Sabo, and C. H. Berlot, “Live cell imaging of Gs and the β2-adrenergic receptor demonstrates that both αs and β 1γ7 internalize upon stimulation and exhibit similar trafficking patterns that differ from that of the β2-adrenergic receptor,” Journal of Biological Chemistry, vol. 279, no. 42, pp. 44101–44112, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. D. S. Evanko, M. M. Thiyagarajan, and P. B. Wedegaertner, “Interaction with Gβγ is required for membrane targeting and palmitoylation of Gα(s) and Gα(q),” Journal of Biological Chemistry, vol. 275, no. 2, pp. 1327–1336, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. J. A. Przybyla and V. J. Watts, “Ligand-induced regulation and localization of cannabinoid CB1 and dopamine D2L receptor heterodimers,” Journal of Pharmacology and Experimental Therapeutics, vol. 332, no. 3, pp. 710–719, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. V. J. Watts, R. Taussig, R. L. Neve, and K. A. Neve, “Dopamine D2 receptor-induced heterologous sensitization of adenylyl cyclase requires Gαs: characterization of Gαs-insensitive mutants of adenylyl cyclase V,” Molecular Pharmacology, vol. 60, no. 6, pp. 1168–1172, 2001. View at Google Scholar · View at Scopus
  24. G. Zimmermann, D. Zhou, and R. Taussig, “Genetic selection of mammalian adenylyl cyclases insensitive to stimulation by G(sα),” Journal of Biological Chemistry, vol. 273, no. 12, pp. 6968–6975, 1998. View at Publisher · View at Google Scholar · View at Scopus
  25. C. H. Nguyen and V. J. Watts, “Dexras1 blocks receptor-mediated heterologous sensitization of adenylyl cyclase 1,” Biochemical and Biophysical Research Communications, vol. 332, no. 3, pp. 913–920, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Avidor-Reiss, I. Nevo, R. Levy, T. Pfeuffer, and Z. Vogel, “Chronic opioid treatment induces adenylyl cyclase V superactivation. Involvement of G(βγ),” Journal of Biological Chemistry, vol. 271, no. 35, pp. 21309–21315, 1996. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Weitmann, G. Schultz, and C. Kleuss, “Adenylyl cyclase type II domains involved in Gβγ stimulation,” Biochemistry, vol. 40, no. 36, pp. 10853–10858, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Baragli, M. L. Grieco, P. Trieu, L. R. Villeneuve, and T. E. Hébert, “Heterodimers of adenylyl cyclases 2 and 5 show enhanced functional responses in the presence of Gαs,” Cellular Signalling, vol. 20, no. 3, pp. 480–492, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. D. J. Dupré and T. E. Hébert, “Biosynthesis and trafficking of seven transmembrane receptor signalling complexes,” Cellular Signalling, vol. 18, no. 10, pp. 1549–1559, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. D. J. Dupré, A. Baragli, R. V. Rebois, N. Éthier, and T. E. Hébert, “Signalling complexes associated with adenylyl cyclase II are assembled during their biosynthesis,” Cellular Signalling, vol. 19, no. 3, pp. 481–489, 2007. View at Publisher · View at Google Scholar
  31. R. V. Rebois, M. Robitaille, C. Galés et al., “Heterotrimeric G proteins form stable complexes with adenylyl cyclase and Kir3.1 channels in living cells,” Journal of Cell Science, vol. 119, no. 13, pp. 2807–2818, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. P. D. Gortari and G. Mengod, “Dopamine D1, D2 and mu-opioid receptors are co-expressed with adenylyl cyclase 5 and phosphodiesterase 7B mRNAs in striatal rat cells,” Brain Research, vol. 1310, pp. 37–45, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. A. L. Dessal, R. Prades, E. Giralt, and A. V. Smrcka, “Rational design of a selective covalent modifier of G protein βγ subunits,” Molecular Pharmacology, vol. 79, no. 1, pp. 24–33, 2011. View at Publisher · View at Google Scholar
  34. H. Wang, H. Xu, L. J. Wu et al., “Identification of an adenylyl cyclase inhibitor for treating neuropathic and inflammatory pain,” Science Translational Medicine, vol. 3, no. 65, article 65ra3, 2011. View at Publisher · View at Google Scholar