Table of Contents
Journal of Signal Transduction
Volume 2012, Article ID 282050, 17 pages
http://dx.doi.org/10.1155/2012/282050
Research Article

The Concept of Divergent Targeting through the Activation and Inhibition of Receptors as a Novel Chemotherapeutic Strategy: Signaling Responses to Strong DNA-Reactive Combinatorial Mimicries

Cancer Drug Research Laboratory, Division of Oncology, Department of Medicine, McGill University Health Centre, Royal Victoria Hospital, Montreal, QC, Canada H3A 1A1

Received 23 October 2011; Accepted 13 December 2011

Academic Editor: Laura Cerchia

Copyright © 2012 Heather L. Watt et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Bredel and E. Jacoby, “Chemogenomics: an emerging strategy for rapid target and drug discovery,” Nature Reviews Genetics, vol. 5, no. 4, pp. 262–275, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Harris and A. Stevens, “Chemogenomics: structuring the drug discovery process to gene families,” Drug Discovery Today, vol. 11, no. 19-20, pp. 880–888, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. N. Merayo, Z. Rachid, Q. Qiu, F. Brahimi, and B. Jean-Claude, “The combi-targeting concept: evidence for the formation of a novel inhibitor in vivo,” Anti-Cancer Drugs, vol. 17, no. 2, pp. 165–171, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Banerjee, Z. Rachid, J. McNamee, and B. Jean-Claude, “Synthesis of a prodrug designed to release multiple inhibitors of the epidermal growth factor receptor tyrosine kinase and an alkylating agent: a novel tumor targeting concept,” Journal of Medicinal Chemistry, vol. 46, no. 25, pp. 5546–5551, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. Q. Qiu, F. Dudouit, S. Matheson et al., “The combi-targeting concept: a novel 3,3-disubstituted nitrosourea with EGFR tyrosine kinase inhibitory properties,” Cancer Chemotherapy and Pharmacology, vol. 51, no. 1, pp. 1–10, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Brahimi, S. Matheson, F. Dudouit, J. McNamee, A. Tari, and B. Jean-Claude, “Inhibition of epidermal growth factor receptor-mediated signaling by “combi-triazene” BJ2000, a new probe for combi-targeting postulates,” Journal of Pharmacology and Experimental Therapeutics, vol. 303, no. 1, pp. 238–246, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Matheson, J. McNamee, and B. Jean-Claude, “Design of a chimeric 3–methyl–1,2,3–triazene with mixed receptor tyrosine kinase and DNA damaging properties: a novel tumor targeting strategy,” Journal of Pharmacology and Experimental Therapeutics, vol. 296, no. 3, pp. 832–840, 2001. View at Google Scholar · View at Scopus
  8. Y. He, X. Yuan, P. Lei et al., “The antiproliferative effects of somatostatin receptor subtype 2 in breast cancer cells,” Acta Pharmacologica Sinica, vol. 30, no. 7, pp. 1053–1059, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Watt, G. Kharmate, and U. Kumar, “Somatostatin receptors 1 and 5 heterodimerize with epidermal growth factor receptor: agonist-dependent modulation of the downstream MAPK signalling pathway in breast cancer cells,” Cellular Signalling, vol. 21, no. 3, pp. 428–439, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Burghardt, K. Barabás, Z. Marcsek, L. Flautner, T. Gress, and G. Varga, “Inhibitory effect of a long-acting somatostatin analogue on EGF-stimulated cell proliferation in Capan-2 cells,” Journal of Physiology Paris, vol. 94, no. 1, pp. 57–62, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Patel, “Basic aspects of somatostatin receptors,” in Advances in Molecular and Cellular Endocrinology, D. LeRoith and C. T. Greenwich, Eds., JAI Press, 1998. View at Google Scholar
  12. Y. Patel, “Somatostatin and its receptor family,” Frontiers in Neuroendocrinology, vol. 20, no. 3, pp. 157–198, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Patel, M. Greenwood, R. Panetta, L. Demchyshyn, H. Niznik, and C. Srikant, “Mini review: the somatostatin receptor family,” Life Sciences, vol. 57, no. 13, pp. 1249–1265, 1995. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. Csaba and P. Dournaud, “Cellular biology of somatostatin receptors,” Neuropeptides, vol. 35, no. 1, pp. 1–23, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Florio, S. Thellung, S. Arena et al., “Somatostatin and its analog lanreotide inhibit the proliferation of dispersed human non-functioning pituitary adenoma cells in vitro,” European Journal of Endocrinology, vol. 141, no. 4, pp. 396–408, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Lahlou, J. Guillermet, M. Hortala et al., “Molecular signaling of somatostatin receptors,” Annals of the New York Academy of Sciences, vol. 1014, pp. 121–131, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. D. C. Lev, L. S. Kim, V. Melnikova, M. Ruiz, H. N. Ananthaswamy, and J. E. Price, “Dual blockade of EGFR and ERK1/2 phosphorylation potentiates growth inhibition of breast cancer cells,” British Journal of Cancer, vol. 91, no. 4, pp. 795–802, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Okubo, J. Kurebayashi, T. Otsuki, Y. Yamamoto, K. Tanaka, and H. Sonoo, “Additive antitumour effect of the epidermal growth factor receptor tyrosine kinase inhibitor gefitinib (Iressa, ZD1839) and the antioestrogen fulvestrant (Faslodex, ICI 182,780) in breast cancer cells,” British Journal of Cancer, vol. 90, no. 1, pp. 236–244, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. M. A. Olayioye, R. M. Neve, H. Lane, and N. E. Hynes, “The ErbB signaling network: receptor heterodimerization in development and cancer,” The EMBO Journal, vol. 19, no. 13, pp. 3159–3167, 2000. View at Google Scholar · View at Scopus
  20. S. Huang, E. A. Armstrong, S. Benavente, P. Chinnaiyan, and P. M. Harari, “Dual-agent molecular targeting of the epidermal growth factor receptor (EGFR): combining anti-EGFR antibody with tyrosine kinase inhibitor,” Cancer Research, vol. 64, no. 15, pp. 5355–5362, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Matheson, The Combi-Targeting Concept: A Novel Tumour Targeting Strategy, McGill University, Montreal, Canada, 2003.
  22. H. L. Watt, Z. Rachid, and B. J. Jean-Claude, “Receptor activation and inhibition in cellular response to chemotherapeutic combinational mimicries: the concept of divergent targeting,” Journal of Neuro-Oncology, vol. 100, no. 3, pp. 345–361, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. Z. Rachid, F. Brahimi, Q. Qiu et al., “Novel nitrogen mustard-armed combi-molecules for the selective targeting of epidermal growth factor receptor overexperessing solid tumors: discovery of an unusual structure-activity relationship,” Journal of Medicinal Chemistry, vol. 50, no. 11, pp. 2605–2608, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. Z. Rachid, F. Brahimi, J. Domarkas, and B. Jean-Claude, “Synthesis of half-mustard combi-molecules with fluorescence properties: correlation with EGFR status,” Bioorganic and Medicinal Chemistry Letters, vol. 15, no. 4, pp. 1135–1138, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Matheson, J. McNamee, T. Wang, M. Alaoui-Jamali, A. Tari, and B. Jean-Claude, “The combi-targeting concept: dissection of the binary mechanism of action of the combi-triazene SMA41 in vitro and antitumor activity in vivo,” Journal of Pharmacology and Experimental Therapeutics, vol. 311, no. 3, pp. 1163–1170, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. Q. Qiu, F. Dudouit, R. Banerjee, J. McNamee, and B. Jean-Claude, “Inhibition of cell signaling by the combi-nitrosourea FD137 in the androgen independent DU145 prostate cancer cell line,” Prostate, vol. 59, no. 1, pp. 13–21, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Brahimi, Z. Rachid, J. McNamee, M. Alaoui-Jamali, A. Tari, and B. Jean-Claude, “Mechanism of action of a novel “combi-triazene” engineered to possess a polar functional group on the alkylating moiety: evidence for enhancement of potency,” Biochemical Pharmacology, vol. 70, no. 4, pp. 511–519, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Caporali, S. Falcinelli, G. Starace et al., “DNA damage induced by temozolomide signals to both ATM and ATR: role of the mismatch repair system,” Molecular Pharmacology, vol. 66, no. 3, pp. 478–491, 2004. View at Google Scholar · View at Scopus
  29. A. Senderowicz, “Targeting cell cycle and apoptosis for the treatment of human malignancies,” Current Opinion in Cell Biology, vol. 16, no. 6, pp. 670–678, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Yacoub, R. McKinstry, D. Hinman, T. Chung, P. Denta, and M. Hagan, “Epidermal growth factor and ionizing radiation up-regulate the DNA repair genes XRCC1 and ERCC1 in DU145 and LNCaP prostate carcinoma through MAPK signaling,” Radiation Research, vol. 159, no. 4, pp. 439–452, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. W. Mattes, C. Lee, J. Laval, and T. O'Connor, “Excision of DNA adducts of nitrogen mustards by bacterial and mammalian 3-methyladenine-DNA glycosylases,” Carcinogenesis, vol. 17, no. 4, pp. 643–648, 1996. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Rink and P. Hopkins, “Direct evidence for DNA intrastrand cross-linking by the nitrogen mustard mechlorethamine in synthetic oligonucleotides,” Bioorganic and Medicinal Chemistry Letters, vol. 5, no. 23, pp. 2845–2850, 1995. View at Google Scholar · View at Scopus
  33. I. Giuliani, E. Boivieux-Ulrich, O. Houcine, C. Guennou, and F. Marano, “Toxic effects of mechlorethamine on mammalian respiratory mucociliary epithelium in primary culture,” Cell Biology and Toxicology, vol. 10, no. 4, pp. 231–246, 1994. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Small, Y. Shi, L. Higgins, and R. Orlowski, “Mitogen-activated protein kinase phosphatase-1 is a mediator of breast cancer chemoresistance,” Cancer Research, vol. 67, no. 9, pp. 4459–4466, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Somasundaram, N. Edmund, D. Moore, G. Small, Y. Shi, and R. Orlowski, “Dietary curcumin inhibits chemotherapy-induced apoptosis in models of human breast cancer,” Cancer Research, vol. 62, no. 13, pp. 3868–3875, 2002. View at Google Scholar · View at Scopus
  36. A. Mita, M. Mita, S. Nawrocki, and F. Giles, “Survivin: key regulator of mitosis and apoptosis and novel target for cancer therapeutics,” Clinical Cancer Research, vol. 14, no. 16, pp. 5000–5005, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. D. Altieri, “The case for survivin as a regulator of microtubule dynamics and cell-death decisions,” Current Opinion in Cell Biology, vol. 18, no. 6, pp. 609–615, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. D. Altieri, “Molecular circuits of apoptosis regulation and cell division control: the survivin paradigm,” Journal of Cellular Biochemistry, vol. 92, no. 4, pp. 656–663, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. D. Altieri, “Survivin, versatile modulation of cell division and apoptosis in cancer,” Oncogene, vol. 22, no. 35, pp. 8581–8589, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Li, X. Wang, W. Li et al., “Somatostatin receptor-1 induces cell cycle arrest and inhibits tumor growth in pancreatic cancer,” Cancer Science, vol. 99, no. 11, pp. 2218–2223, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. B. Zhao, H. Zhao, N. Zhao, and X. Zhu, “Cholangiocarcinoma cells express somatostatin receptor subtype 2 and respond to octreotide treatment,” Journal of Hepato-Biliary-Pancreatic Surgery, vol. 9, no. 4, pp. 497–502, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. K. Sharma, Y. Patel, and C. B. Srikant, “C-terminal region of human somatostatin receptor 5 is required for induction of Rb and G1 cell cycle arrest,” Molecular Endocrinology, vol. 13, no. 1, pp. 82–90, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Sharma, Y. Patel, and C. Srikant, “Subtype-selective induction of wild-type p53 and apoptosis, but not cell cycle arrest, by human somatostatin receptor 3,” Molecular Endocrinology, vol. 10, no. 12, pp. 1688–1696, 1996. View at Publisher · View at Google Scholar · View at Scopus
  44. K. Sharma and C. Srikant, “Induction of wild-type p53, Bax, and acidic endonuclease during somatostatin-signaled apoptosis in MCF-7 human breast cancer cells,” International Journal of Cancer, vol. 76, no. 2, pp. 259–266, 1998. View at Google Scholar · View at Scopus
  45. J. Zhao, T. Tenev, L. Martins, J. Downward, and N. Lemoine, “The ubiquitin-proteasome pathway regulates survivin degradation in a cell cycle-dependent manner,” Journal of Cell Science, vol. 113, part 23, pp. 4363–4371, 2000. View at Google Scholar · View at Scopus