Table of Contents
Journal of Signal Transduction
Volume 2012, Article ID 308943, 17 pages
http://dx.doi.org/10.1155/2012/308943
Review Article

MAPK Usage in Periodontal Disease Progression

1Department of Endodontics, Periodontics and Oral Medicine, The First People’s Hospital of Yunnan Province, Kunming, Yunnan 650032, China
2Department of Craniofacial Biology and Center for Oral Health Research, Medical University of South Carolina, Charleston, SC 29425, USA

Received 15 August 2011; Accepted 5 October 2011

Academic Editor: Fred Schaper

Copyright © 2012 Qiyan Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. J. Paster, S. K. Boches, J. L. Galvin et al., “Bacterial diversity in human subgingival plaque,” Journal of Bacteriology, vol. 183, no. 12, pp. 3770–3783, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. S. S. Socransky, A. D. Haffajee, L. A. Ximenez-Fyvie, M. Feres, and D. Mager, “Ecological considerations in the treatment of Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis periodontal infections,” Periodontology 2000, vol. 20, no. 1, pp. 341–362, 1999. View at Google Scholar · View at Scopus
  3. S. S. Socransky, A. D. Haffajee, M. A. Cugini, C. Smith, and R. L. Kent, “Microbial complexes in subgingival plaque,” Journal of Clinical Periodontology, vol. 25, no. 2, pp. 134–144, 1998. View at Google Scholar · View at Scopus
  4. A. Savage, K. A. Eaton, D. R. Moles, and I. Needleman, “A systematic review of definitions of periodontitis and methods that have been used to identify this disease,” Journal of Clinical Periodontology, vol. 36, no. 6, pp. 458–467, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. R. C. Page and K. S. Kornman, “The pathogenesis of human periodontitis: an introduction,” Periodontology 2000, vol. 14, pp. 9–11, 1997. View at Google Scholar · View at Scopus
  6. K. L. Kirkwood, J. A. Cirelli, J. E. Rogers, and W. V. Giannobile, “Novel host response therapeutic approaches to treat periodontal diseases,” Periodontology 2000, vol. 43, no. 1, pp. 294–315, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Löe, A. Anerud, H. Boysen, and E. Morrison, “Natural history of periodontal disease in man. Rapid, moderate and no loss of attachment in Sri Lankan laborers 14 to 46 years of age,” Journal of Clinical Periodontology, vol. 13, no. 5, pp. 431–445, 1986. View at Google Scholar · View at Scopus
  8. V. Baelum, O. Fejerskov, and T. Karring, “Oral hygiene, gingivitis and periodontal breakdown in adult Tanzanians,” Journal of Periodontal Research, vol. 21, no. 3, pp. 221–232, 1986. View at Google Scholar · View at Scopus
  9. V. Baelum, O. Fejerskov, and F. Manji, “Periodontal diseases in adult Kenyans,” Journal of Clinical Periodontology, vol. 15, no. 7, pp. 445–452, 1988. View at Google Scholar · View at Scopus
  10. B. L. Mealey and L. F. Rose, “Diabetes mellitus and inflammatory periodontal diseases,” Compendium of Continuing Education in Dentistry, vol. 29, no. 7, pp. 402–413, 2008. View at Google Scholar · View at Scopus
  11. L. Feller and J. Lemmer, “Necrotizing periodontal diseases in HIV-seropositive subjects: pathogenic mechanisms,” Journal of the International Academy of Periodontology, vol. 10, no. 1, pp. 10–15, 2008. View at Google Scholar · View at Scopus
  12. M. Handfield, H. V. Baker, and R. J. Lamont, “Beyond good and evil in the oral cavity: insights into host-microbe relationships derived from transcriptional profiling of gingival cells,” Journal of Dental Research, vol. 87, no. 3, pp. 203–223, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. J. J. Taylor, “Cytokine regulation of immune responses to Porphyromonas gingivalis,” Periodontology 2000, vol. 54, no. 1, pp. 160–194, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Beutler, K. Hoebe, X. Du, and R. J. Ulevitch, “How we detect microbes and respond to them: the Toll-like receptors and their transducers,” Journal of Leukocyte Biology, vol. 74, no. 4, pp. 479–485, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. K. L. Kirkwood and C. Rossa, “The potential of p38 MAPK inhibitors to modulate periodontal infections,” Current Drug Metabolism, vol. 10, no. 1, pp. 55–67, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. P. M. Preshaw and J. J. Taylor, “How has research into cytokine interactions and their role in driving immune responses impacted our understanding of periodontitis?” Journal of Clinical Periodontology, vol. 38, supplement 11, pp. 60–84, 2011. View at Publisher · View at Google Scholar
  17. C. Rossa Jr., L. Min, P. Bronson, and K. L. Kirkwood, “Transcriptional activation of MMP-13 by periodontal pathogenic LPS requires p38 MAP kinase,” Journal of Endotoxin Research, vol. 13, no. 2, pp. 85–93, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Sugawara, A. Uehara, Y. Fujimoto et al., “Toll-like receptors, NOD1, and NOD2 in oral epithelial cells,” Journal of Dental Research, vol. 85, no. 6, pp. 524–529, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Mori, A. Yoshimura, T. Ukai, E. Lien, T. Espevik, and Y. Hara, “Immunohistochemical localization of Toll-like receptors 2 and 4 in gingival tissue from patients with periodontitis,” Oral Microbiology and Immunology, vol. 18, no. 1, pp. 54–58, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Ren, W. K. Leung, R. P. Darveau, and L. Jin, “The expression profile of lipopolysaccharide-binding protein, membrane-bound CD14, and toll-like receptors 2 and 4 in chronic periodontitis,” Journal of Periodontology, vol. 76, no. 11, pp. 1950–1959, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Kajita, T. Honda, R. Amanuma et al., “Quantitative messenger RNA expression of Toll-like receptors and interferon-α1 in gingivitis and periodontitis,” Oral Microbiology and Immunology, vol. 22, no. 6, pp. 398–402, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Akira, S. Uematsu, and O. Takeuchi, “Pathogen recognition and innate immunity,” Cell, vol. 124, no. 4, pp. 783–801, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Hemmi, T. Kaisho, O. Takeuchi et al., “Small-antiviral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway,” Nature Immunology, vol. 3, no. 2, pp. 196–200, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Hoshino, T. Kaisho, T. Iwabe, O. Takeuchi, and S. Akira, “Differential involvement of IFN-β in toll-like receptor-stimulated dendritic cell activation,” International Immunology, vol. 14, no. 10, pp. 1225–1231, 2002. View at Google Scholar · View at Scopus
  25. M. Yamamoto, S. Sato, H. Hemmi et al., “Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway,” Science, vol. 301, no. 5633, pp. 640–643, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Yamamoto, S. Sato, H. Hemmi et al., “TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway,” Nature Immunology, vol. 4, no. 11, pp. 1144–1150, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Yamamoto, S. Sato, H. Hemmi et al., “Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4,” Nature, vol. 420, no. 6913, pp. 324–329, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. L. A. J. O'Neill and C. Greene, “Signal transduction pathways activated by the IL-1 receptor family: ancient signaling machinery in mammals, insects, and plants,” Journal of Leukocyte Biology, vol. 63, no. 6, pp. 650–657, 1998. View at Google Scholar · View at Scopus
  29. H. An, Y. Yu, M. Zhang et al., “Involvement of ERK, p38 and NF-κB signal transduction in regulation of TLR2, TLR4 and TLR9 gene expression induced by lipopolysaccharide in mouse dendritic cells,” Immunology, vol. 106, no. 1, pp. 38–45, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Akira, “Mammalian Toll-like receptors,” Current Opinion in Immunology, vol. 15, no. 1, pp. 5–11, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Beutler and V. Kruys, “Lipopolysaccharide signal transduction, regulation of tumor necrosis factor biosynthesis, and signaling by tumor necrosis factor itself,” Journal of Cardiovascular Pharmacology, vol. 25, no. 2, supplement, pp. S1–S8, 1995. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Ono and J. Han, “The p38 signal transduction pathway Activation and function,” Cellular Signalling, vol. 12, no. 1, pp. 1–13, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Dong, R. J. Davis, and R. A. Flavell, “MAP kinases in the immune response,” Annual Review of Immunology, vol. 20, pp. 55–72, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. B. W. Bainbridge and R. P. Darveau, “Porphyromonas gingivalis lipopolysaccharide: an unusual pattern recognition receptor ligand for the innate host defense system,” Acta Odontologica Scandinavica, vol. 59, no. 3, pp. 131–138, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Hirschfeld, Y. Ma, J. H. Weis, S. N. Vogel, and J. J. Weis, “Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2,” Journal of Immunology, vol. 165, no. 2, pp. 618–622, 2000. View at Google Scholar · View at Scopus
  36. P. N. Madianos, Y. A. Bobetsis, and D. F. Kinane, “Generation of inflammatory stimuli: how bacteria set up inflammatory responses in the gingiva,” Journal of Clinical Periodontology, vol. 32, no. 6, pp. 57–71, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. B. K. Choi, J. H. Jung, H. Y. Suh et al., “Activation of matrix metalloproteinase-2 by a novel oral spirochetal species Treponema lecithinolyticum,” Journal of Periodontology, vol. 72, no. 11, pp. 1594–1600, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Jotwani, A. K. Palucka, M. Al-Quotub et al., “Mature dendritic cells infiltrate the T cell-rich region of oral mucosa in chronic periodontitis: in situ, in vivo, and in vitro studies,” Journal of Immunology, vol. 167, no. 8, pp. 4693–4700, 2001. View at Google Scholar · View at Scopus
  39. R. Mahanonda, P. Pothiraksanon, N. Sa-Ard-Iam et al., “The effects of Porphyromonas gingivalis LPS and Actinobacillus actinomycetemcomitans LPS on human dendritic cells in vitro, and in a mouse model in vivo,” Asian Pacific Journal of Allergy and Immunology, vol. 24, no. 4, pp. 223–228, 2006. View at Google Scholar
  40. G. P. Garlet, W. Martins, B. R. Ferreira, C. M. Milanezi, and J. S. Silva, “Patterns of chemokines and chemokine receptors expression in different forms of human periodontal disease,” Journal of Periodontal Research, vol. 38, no. 2, pp. 210–217, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. G. P. Garlet, C. R. Cardoso, T. A. Silva et al., “Cytokine pattern determines the progression of experimental periodontal disease induced by Actinobacillus actinomycetemcomitans through the modulation of MMPs, RANKL, and their physiological inhibitors,” Oral Microbiology and Immunology, vol. 21, no. 1, pp. 12–20, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Stashenko, P. Fujiyoshi, M. S. Obernesser, L. Prostak, A. D. Haffajee, and S. S. Socransky, “Levels of interleukin 1 beta in tissue from sites of active periodontal disease,” Journal of Clinical Periodontology, vol. 18, no. 7, pp. 548–554, 1991. View at Google Scholar · View at Scopus
  43. P. Stashenko, J. J. Jandinski, P. Fujiyoshi, J. Rynar, and S. S. Socransky, “Tissue levels of bone resorptive cytokines in periodontal disease,” Journal of Periodontology, vol. 62, no. 8, pp. 504–509, 1991. View at Google Scholar · View at Scopus
  44. H. J. Lee, I. K. Kang, C. P. Chung, and S. M. Choi, “The subgingival microflora and gingival crevicular fluid cytokines in refractory periodontitis,” Journal of Clinical Periodontology, vol. 22, no. 11, pp. 885–890, 1995. View at Google Scholar · View at Scopus
  45. W. Lee, S. Aitken, J. Sodek, and C. A. McCulloch, “Evidence of a direct relationship between neutrophil collagenase activity and periodontal tissue destruction in vivo: role of active enzyme in human periodontitis,” Journal of Periodontal Research, vol. 30, no. 1, pp. 23–33, 1995. View at Google Scholar · View at Scopus
  46. A. L. Ejeil, S. Igondjo-Tchen, S. Ghomrasseni, B. Pellat, G. Godeau, and B. Gogly, “Expression of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in healthy and diseased human gingiva,” Journal of Periodontology, vol. 74, no. 2, pp. 188–195, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. A. L. Ejeil, F. Gaultier, S. Igondjo-Tchen et al., “Are cytokines linked to collagen breakdown during periodontal disease progression?” Journal of Periodontology, vol. 74, no. 2, pp. 196–201, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. K. Reddi, S. P. Nair, P. A. White et al., “Surface-associated material from the bacterium Actinobacillus actinomycetemcomitans contains a peptide which, in contrast to lipopolysaccharide, directly stimulates fibroblast interleukin-6 gene transcription,” European Journal of Biochemistry, vol. 236, no. 3, pp. 871–876, 1996. View at Google Scholar · View at Scopus
  49. S. P. Engebretson, J. Hey-Hadavi, F. J. Ehrhardt et al., “Gingival crevicular fluid levels of interleukin-1β and glycemic control in patients with chronic periodontitis and type 2 diabetes,” Journal of Periodontology, vol. 75, no. 9, pp. 1203–1208, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Gamonal, A. Acevedo, A. Bascones, O. Jorge, and A. Silva, “Levels of interleukin-1β, -8, and -10 and RANTES in gingnival crevicular fluid and cell populations in adult periodontitis patients and the effect of periodontal treatment,” Journal of Periodontology, vol. 71, no. 10, pp. 1535–1545, 2000. View at Google Scholar · View at Scopus
  51. R. Górska, H. Gregorek, J. Kowalski, A. Laskus-Perendyk, M. Syczewska, and K. Madaliński, “Relationship between clinical parameters and cytokine profiles in inflamed gingival tissue and serum samples from patients with chronic periodontitis,” Journal of Clinical Periodontology, vol. 30, no. 12, pp. 1046–1052, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Geivelis, D. W. Turner, E. D. Pederson, and B. L. Lamberts, “Measurements of interleukin-6 in gingival crevicular fluid from adults with destructive periodontal disease,” Journal of Periodontology, vol. 64, no. 10, pp. 980–983, 1993. View at Google Scholar · View at Scopus
  53. K. Hirose, E. Isogai, H. Miura, and I. Ueda, “Levels of Porphyromonas gingivalis fimbriae and inflammatory cytokines in gingival crevicular fluid from adult human subjects,” Microbiology and Immunology, vol. 41, no. 1, pp. 21–26, 1997. View at Google Scholar · View at Scopus
  54. R. A. Reinhardt, M. P. Masada, W. B. Kaldahl et al., “Gingival fluid IL-1 and IL-6 levels in refractory periodontitis,” Journal of Clinical Periodontology, vol. 20, no. 3, pp. 225–231, 1993. View at Google Scholar · View at Scopus
  55. K. F. Al-Shammari, W. V. Giannobile, W. A. Aldredge et al., “Effect of non-surgical periodontal therapy on C-telopeptide pyridinoline cross-links (ICTP) and interleukin-1 levels,” Journal of Periodontology, vol. 72, no. 8, pp. 1045–1051, 2001. View at Publisher · View at Google Scholar · View at Scopus
  56. D. T. Graves and D. Cochran, “The contribution of interleukin-1 and tumor necrosis factor to periodontal tissue destruction,” Journal of Periodontology, vol. 74, no. 3, pp. 391–401, 2003. View at Publisher · View at Google Scholar · View at Scopus
  57. P. Collin-Osdoby, L. Rothe, F. Anderson, M. Nelson, W. Maloney, and P. Osdoby, “Receptor activator of NF-kappa B and osteoprotegerin expression by human microvascular endothelial cells, regulation by inflammatory cytokines, and role in human osteoclastogenesis,” The Journal of Biological Chemistry, vol. 276, no. 23, pp. 20659–20672, 2001. View at Publisher · View at Google Scholar · View at Scopus
  58. Y. Jiang, C. K. Mehta, T. Y. Hsu, and F. F. H. Alsulaimani, “Bacteria induce osteoclastogenesis via an osteoblast-independent pathway,” Infection and Immunity, vol. 70, no. 6, pp. 3143–3148, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. C. Rossa, K. Ehmann, M. Liu, C. Patil, and K. L. Kirkwood, “MKK3/6-p38 MAPK signaling is required for IL-1β and TNF-α-induced RANKL expression in bone marrow stromal cells,” Journal of Interferon and Cytokine Research, vol. 26, no. 10, pp. 719–729, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. Y. T. A. Teng, H. Nguyen, X. Gao et al., “Functional human T-cell immunity and osteoprotegerin ligand control alveolar bone destruction in periodontal infection,” Journal of Clinical Investigation, vol. 106, no. 6, pp. R59–R67, 2000. View at Google Scholar · View at Scopus
  61. M. A. Taubman, P. Valverde, X. Han, and T. Kawai, “Immune response: they key to bone resorption in periodontal disease,” Journal of Periodontology, vol. 76, no. 11, supplement, pp. 2033–2041, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Mogi, J. Otogoto, N. Ota, and A. Togari, “Differential expression of RANKL and osteoprotegerin in gingival crevicular fluid of patients with periodontitis,” Journal of Dental Research, vol. 83, no. 2, pp. 166–169, 2004. View at Google Scholar · View at Scopus
  63. T. Kawai, T. Matsuyama, Y. Hosokawa et al., “B and T lymphocytes are the primary sources of RANKL in the bone resorptive lesion of periodontal disease,” American Journal of Pathology, vol. 169, no. 3, pp. 987–998, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. A. J. Whitmarsh and R. J. Davis, “Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways,” Journal of Molecular Medicine, vol. 74, no. 10, pp. 589–607, 1996. View at Publisher · View at Google Scholar · View at Scopus
  65. R. J. Davis, “The mitogen-activated protein kinase signal transduction pathway,” The Journal of Biological Chemistry, vol. 268, no. 20, pp. 14553–14556, 1993. View at Google Scholar · View at Scopus
  66. E. Carballo, W. S. Lai, and P. J. Blackshear, “Feedback inhibition of macrophage tumor necrosis factor-α production by tristetraprolin,” Science, vol. 281, no. 5379, pp. 1001–1005, 1998. View at Google Scholar · View at Scopus
  67. K. R. Mahtani, M. Brook, J. L. E. Dean, G. Sully, J. Saklatvala, and A. R. Clark, “Mitogen-activated protein kinase p38 controls the expression and posttranslational modification of tristetraprolin, a regulator of tumor necrosis factor alpha mRNA stability,” Molecular and Cellular Biology, vol. 21, no. 19, pp. 6461–6469, 2001. View at Publisher · View at Google Scholar · View at Scopus
  68. G. Stoecklin, T. Stubbs, N. Kedersha et al., “MK2-induced tristetraprolin:14-3-3 Complexes prevent stress granule association and ARE-mRNA decay,” EMBO Journal, vol. 23, no. 6, pp. 1313–1324, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. S. M. Keyse, “Protein phosphatases and the regulation of mitogen-activated protein kinase signalling,” Current Opinion in Cell Biology, vol. 12, no. 2, pp. 186–192, 2000. View at Publisher · View at Google Scholar · View at Scopus
  70. C. A. Dinarello, “Biologic basis for interleukin-1 in disease,” Blood, vol. 87, no. 6, pp. 2095–2147, 1996. View at Google Scholar · View at Scopus
  71. D. Giovine, “Detection and population analysis of IL-1 and TNF gene polymorphisms,” in Cytokine Molecular Biology—A Practical Approach, pp. 21–46, 3rd edition, 2000. View at Google Scholar
  72. M. A. Rogers, L. Figliomeni, K. Baluchova et al., “Do interleukin-1 polymorphisms predict the development of periodontitis or the success of dental implants?” Journal of Periodontal Research, vol. 37, no. 1, pp. 37–41, 2002. View at Google Scholar · View at Scopus
  73. L. Yin, L. Li, Y. Pan, Y. Tan, and A. He, “IL-1 beta mRNA and TNF-alpha mRNA expression in gingival tissues of patients with adult periodontitis,” Hua xi Kou Qiang yi Xue za Zhi, vol. 19, no. 5, pp. 318–321, 2001. View at Google Scholar · View at Scopus
  74. J. L. Ebersole, R. E. Singer, B. Steffensen, T. Filloon, and K. S. Kornman, “Inflammatory mediators and immunoglobulins in GCF from healthy, gingivitis and periodontitis sites,” Journal of Periodontal Research, vol. 28, no. 6, pp. 543–546, 1993. View at Google Scholar · View at Scopus
  75. G. L. Howells, “Cytokine networks in destructive periodontal disease,” Oral diseases, vol. 1, no. 4, pp. 266–270, 1995. View at Google Scholar · View at Scopus
  76. R. Assuma, T. Oates, D. Cochran, S. Amar, and D. T. Graves, “IL-1 and TNF antagonists inhibit the inflammatory response and bone loss in experimental periodontitis,” Journal of Immunology, vol. 160, no. 1, pp. 403–409, 1998. View at Google Scholar · View at Scopus
  77. H. Birkedal-Hansen, “Role of matrix metalloproteinases in human periodontal diseases,” Journal of Periodontology, vol. 64, no. 5, pp. 474–484, 1993. View at Google Scholar · View at Scopus
  78. T. Bouwmeester, A. Bauch, H. Ruffner et al., “A physical and functional map of the human TNF-α/NF-κB signal transduction pathway,” Nature Cell Biology, vol. 6, no. 2, pp. 97–105, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. X. Cheng, M. Kinosaki, R. Murali, and M. I. Greene, “The TNF receptor superfamily: role in immune inflammation and bone formation,” Immunologic Research, vol. 27, no. 2-3, pp. 287–294, 2003. View at Publisher · View at Google Scholar · View at Scopus
  80. M. Ii, N. Matsunaga, K. Hazeki et al., “A novel cyclohexene derivative, ethyl (6R)-6-[N-(2-chloro-4-fluorophenyl) sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), selectively inhibits toll-like receptor 4-mediated cytokine production through suppression of intracellular signaling,” Molecular Pharmacology, vol. 69, no. 4, pp. 1288–1295, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. D. T. Graves, “The potential role of chemokines and inflammatory cytokines in periodontal disease progression,” Clinical Infectious Diseases, vol. 28, no. 3, pp. 482–490, 1999. View at Google Scholar
  82. S. H. Ridley, S. J. Sarsfield, J. C. Lee et al., “Actions of IL-1 are selectively controlled by p38 mitogen-activated protein kinase: regulation of prostaglandin H synthase-2, metalloproteinases, and IL-6 at different levels,” Journal of Immunology, vol. 158, no. 7, pp. 3165–3173, 1997. View at Google Scholar · View at Scopus
  83. S. J. Ajizian, B. K. English, and E. A. Meals, “Specific inhibitors of p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways block inducible nitric oxide synthase and tumor necrosis factor accumulation in murine macrophages stimulated with lipopolysaccharide and interferon-γ,” Journal of Infectious Diseases, vol. 179, no. 4, pp. 939–944, 1999. View at Publisher · View at Google Scholar · View at Scopus
  84. J. L. E. Dean, M. Brook, A. R. Clark, and J. Saklatvala, “p38 Mitogen-activated protein kinase regulates cyclooxygenase-2 mRNA stability and transcription in lipopolysaccharide-treated human monocytes,” The Journal of Biological Chemistry, vol. 274, no. 1, pp. 264–269, 1999. View at Publisher · View at Google Scholar · View at Scopus
  85. D. C. Underwood, R. R. Osborn, S. Bochnowicz et al., “SB 239063, a p38 MAPK inhibitor, reduces neutrophilia, inflammatory cytokines, MMP-9, and fibrosis in lung,” American Journal of Physiology, vol. 279, no. 5, pp. L895–L902, 2000. View at Google Scholar · View at Scopus
  86. G. Mbalaviele, G. Anderson, A. Jones et al., “Inhibition of p38 mitogen-activated protein kinase prevents inflammatory bone destruction,” Journal of Pharmacology and Experimental Therapeutics, vol. 317, no. 3, pp. 1044–1053, 2006. View at Publisher · View at Google Scholar · View at Scopus
  87. M. H. Cobb and E. J. Goldsmith, “How MAP kinases are regulated,” The Journal of Biological Chemistry, vol. 270, no. 25, pp. 14843–14846, 1995. View at Publisher · View at Google Scholar · View at Scopus
  88. J. Saklatvala, “The p38 MAP kinase pathway as a therapeutic target in inflammatory disease,” Current Opinion in Pharmacology, vol. 4, no. 4, pp. 372–377, 2004. View at Publisher · View at Google Scholar · View at Scopus
  89. A. Cuenda and S. Rousseau, “p38 MAP-Kinases pathway regulation, function and role in human diseases,” Biochimica et Biophysica Acta, vol. 1773, no. 8, pp. 1358–1375, 2007. View at Publisher · View at Google Scholar · View at Scopus
  90. M. Allen, L. Svensson, M. Roach, J. Hambor, J. McNeish, and C. A. Gabel, “Deficiency of the stress kinase p38α results in embryonic lethality: characterization of the kinase dependence of stress responses of enzyme-deficient embryonic stem cells,” Journal of Experimental Medicine, vol. 191, no. 5, pp. 859–869, 2000. View at Publisher · View at Google Scholar · View at Scopus
  91. S. Medicherla, J. Y. Ma, R. Mangadu et al., “A selective p38α mitogen-activated protein kinase inhibitor reverses cartilage and bone destruction in mice with collagen-induced arthritis,” Journal of Pharmacology and Experimental Therapeutics, vol. 318, no. 1, pp. 132–141, 2006. View at Publisher · View at Google Scholar · View at Scopus
  92. Y. Wada, T. Nakajima-Yamada, K. Yamada et al., “R-130823, a novel inhibitor of p38 MAPK, ameliorates hyperalgesia and swelling in arthritis models,” European Journal of Pharmacology, vol. 506, no. 3, pp. 285–295, 2005. View at Publisher · View at Google Scholar · View at Scopus
  93. A. A. Culbert, S. D. Skaper, D. R. Howlett et al., “MAPK-activated protein kinase 2 deficiency in microglia inhibits pro-inflammatory mediator release and resultant neurotoxicity: relevance to neuroinflammation in a transgenic mouse model of Alzheimer disease,” The Journal of Biological Chemistry, vol. 281, no. 33, pp. 23658–23667, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. Y. Takanami-Ohnishi, S. Amano, S. Kimura et al., “Essential role of p38 mitogen-activated protein kinase in contact hypersensitivity,” The Journal of Biological Chemistry, vol. 277, no. 40, pp. 37896–37903, 2002. View at Publisher · View at Google Scholar · View at Scopus
  95. J. E. Clark, N. Sarafraz, and M. S. Marber, “Potential of p38-MAPK inhibitors in the treatment of ischaemic heart disease,” Pharmacology and Therapeutics, vol. 116, no. 2, pp. 192–206, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. W. Duan and W. S. F. Wong, “Targeting mitogen-activated protein kinases for asthma,” Current Drug Targets, vol. 7, no. 6, pp. 691–698, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. Y. Sasaki and S. Aiba, “Dendritic cells and contact dermatitis,” Clinical Reviews in Allergy and Immunology, vol. 33, no. 1-2, pp. 27–34, 2007. View at Publisher · View at Google Scholar · View at Scopus
  98. B. A. Mercer and J. M. D'Armiento, “Emerging role of MAP kinase pathways as therapeutic targets in COPD,” International Journal of Chronic Obstructive Pulmonary Disease, vol. 1, no. 2, pp. 137–150, 2006. View at Publisher · View at Google Scholar · View at Scopus
  99. A. M. Badger, J. N. Bradbeer, B. Votta, J. C. Lee, J. L. Adams, and D. E. Griswold, “Pharmacological profile of SB 203580, a selective inhibitor of cytokine suppressive binding protein/p38 kinase, in animal models of arthritis, bone resorption, endotoxin shock and immune function,” Journal of Pharmacology and Experimental Therapeutics, vol. 279, no. 3, pp. 1453–1461, 1996. View at Google Scholar · View at Scopus
  100. M. Gaestel, A. Mengel, U. Bothe, and K. Asadullah, “Protein kinases as small molecule inhibitor targets in inflammation,” Current Medicinal Chemistry, vol. 14, no. 21, pp. 2214–2234, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. L. Revesz, E. Blum, F. E. Di Padova et al., “Novel p38 inhibitors with potent oral efficacy in several models of rheumatoid arthritis,” Bioorganic and Medicinal Chemistry Letters, vol. 14, no. 13, pp. 3595–3599, 2004. View at Publisher · View at Google Scholar · View at Scopus
  102. J. C. Lee, S. Kumar, D. E. Griswold, D. C. Underwood, B. J. Votta, and J. L. Adams, “Inhibition of p38 MAP kinase as a therapeutic strategy,” Immunopharmacology, vol. 47, no. 2-3, pp. 185–201, 2000. View at Publisher · View at Google Scholar · View at Scopus
  103. J. R. Jackson, B. Bolognese, L. Hillegass et al., “Pharmacological effects of SB 220025, a selective inhibitor of p38 mitogen-activated protein kinase, in angiogenesis and chronic inflammatory disease models,” Journal of Pharmacology and Experimental Therapeutics, vol. 284, no. 2, pp. 687–692, 1998. View at Google Scholar · View at Scopus
  104. C. Peifer, G. Wagner, and S. Laufer, “New approaches to the treatment of inflammatory disorders small molecule inhibitors of p38 MAP kinase,” Current Topics in Medicinal Chemistry, vol. 6, no. 2, pp. 113–149, 2006. View at Publisher · View at Google Scholar · View at Scopus
  105. K. L. Kirkwood, F. Li, J. E. Rogers et al., “A p38α selective mitogen-activated protein kinase inhibitor prevents periodontal bone loss,” Journal of Pharmacology and Experimental Therapeutics, vol. 320, no. 1, pp. 56–63, 2007. View at Publisher · View at Google Scholar · View at Scopus
  106. J. Zwerina, S. Hayer, K. Redlich et al., “Activation of p38 MAPK is a key step in tumor necrosis factor-mediated inflammatory bone destruction,” Arthritis and Rheumatism, vol. 54, no. 2, pp. 463–472, 2006. View at Publisher · View at Google Scholar · View at Scopus
  107. C. Patil, X. Zhu, C. Rossa, Y. J. Kim, and K. L. Kirkwood, “p38 MAPK regulates IL-1β induced IL-6 expression through mRNA stability in osteoblasts,” Immunological Investigations, vol. 33, no. 2, pp. 213–233, 2004. View at Google Scholar · View at Scopus
  108. C. Patil, C. Rossa, and K. L. Kirkwood, “Actinobacillus actinomycetemcomitans lipopolysaccharide induces interleukin-6 expression through multiple mitogen-activated protein kinase pathways in periodontal ligament fibroblasts,” Oral Microbiology and Immunology, vol. 21, no. 6, pp. 392–398, 2006. View at Publisher · View at Google Scholar · View at Scopus
  109. J. E. Rogers, F. Li, D. D. Coatney et al., “A p38 mitogen-activated protein kinase inhibitor arrests active alveolar bone loss in a rat periodontitis model,” Journal of Periodontology, vol. 78, no. 10, pp. 1992–1998, 2007. View at Publisher · View at Google Scholar · View at Scopus
  110. C. Dominguez, D. A. Powers, and N. Tamayo, “p38 MAP kinase inhibitors: many are made, but few are chosen,” Current Opinion in Drug Discovery and Development, vol. 8, no. 4, pp. 421–430, 2005. View at Google Scholar · View at Scopus
  111. D. M. Dambach, “Potential adverse effects associated with inhibition of p38α/β MAP kinases,” Current Topics in Medicinal Chemistry, vol. 5, no. 10, pp. 929–939, 2005. View at Publisher · View at Google Scholar · View at Scopus
  112. D. F. Rogers and M. A. Giembycz, “Asthma therapy for the 21st century,” Trends in Pharmacological Sciences, vol. 19, no. 5, pp. 160–164, 1998. View at Publisher · View at Google Scholar · View at Scopus
  113. S. Kumar, J. Boehm, and J. C. Lee, “P38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases,” Nature Reviews Drug Discovery, vol. 2, no. 9, pp. 717–726, 2003. View at Google Scholar · View at Scopus
  114. C. Pargellis and J. Regan, “Inhibitors of p38 mitogen-activated protein kinase for the treatment of rheumatoid arthritis,” Current Opinion in Investigational Drugs, vol. 4, no. 5, pp. 566–571, 2003. View at Google Scholar · View at Scopus
  115. B. van den Blink, N. P. Juffermans, T. Ten Hove et al., “p38 mitogen-activated protein kinase inhibition increases cytokine release by macrophages in vitro and during infection in vivo,” Journal of Immunology, vol. 166, no. 1, pp. 582–587, 2001. View at Google Scholar · View at Scopus
  116. R. H. Adams, A. Porras, G. Alonso et al., “Essential role of p38α MAP kinase in placental but not embryonic cardiovascular development,” Molecular Cell, vol. 6, no. 1, pp. 109–116, 2000. View at Google Scholar · View at Scopus
  117. J. S. Mudgett, J. Ding, L. Guh-Siesel et al., “Essential role for p38α mitogen-activated protein kinase in placental angiogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 19, pp. 10454–10459, 2000. View at Google Scholar · View at Scopus
  118. K. Tamura, T. Sudo, U. Senftleben, A. M. Dadak, R. Johnson, and M. Karin, “Requirement for p38α in erythropoietin expression: a role for stress kinases in erythropoiesis,” Cell, vol. 102, no. 2, pp. 221–231, 2000. View at Google Scholar · View at Scopus
  119. D. Stokoe, D. G. Campbell, S. Nakielny et al., “MAPKAP kinase-2; a novel protein kinase activated by mitogen-activated protein kinase,” EMBO Journal, vol. 11, no. 11, pp. 3985–3994, 1992. View at Google Scholar · View at Scopus
  120. A. Kotlyarov, A. Neininger, C. Schubert et al., “MAPKAP kinase 2 is essential for LPS-induced TNF-α biosynthesis,” Nature Cell Biology, vol. 1, no. 2, pp. 94–97, 1999. View at Google Scholar · View at Scopus
  121. K. Jagavelu, U. J. F. Tietge, M. Gaestel, H. Drexler, B. Schieffer, and U. Bavendiek, “Systemic deficiency of the MAP kinase-activated protein kinase 2 reduces atherosclerosis in hypercholesterolemic mice,” Circulation Research, vol. 101, no. 11, pp. 1104–1112, 2007. View at Publisher · View at Google Scholar · View at Scopus
  122. M. Hegen, M. Gaestel, C. L. Nickerson-Nutter, L. L. Lin, and J. B. Telliez, “MAPKAP kinase 2-deficient mice are resistant to collagen-induced arthritis,” Journal of Immunology, vol. 177, no. 3, pp. 1913–1917, 2006. View at Google Scholar · View at Scopus
  123. X. Wang, L. Xu, H. Wang, P. R. Young, M. Gaestel, and G. Z. Feuerstein, “Mitogen-activated protein kinase-activated protein (MAPKAP) kinase 2 deficiency protects brain from ischemic injury in mice,” The Journal of Biological Chemistry, vol. 277, no. 46, pp. 43968–43972, 2002. View at Publisher · View at Google Scholar · View at Scopus
  124. E. Martín-Blanco, “p38 MAPK signalling cascades: ancient roles new functions,” BioEssays, vol. 22, no. 7, pp. 637–645, 2000. View at Google Scholar
  125. M. O. Hannigan, L. Zhan, Y. Ai, A. Kotlyarov, M. Gaestel, and C. K. Huang, “Abnormal migration phenotype of mitogen-activated protein kinase-activated protein kinase 2-/- neutrophils in zigmond chambers containing formyl-methionyl-leucyl-phenylalanine gradients,” Journal of Immunology, vol. 167, no. 7, pp. 3953–3961, 2001. View at Google Scholar · View at Scopus
  126. A. Kotlyarov, Y. Yannoni, S. Fritz et al., “Distinct cellular functions of MK2,” Molecular and Cellular Biology, vol. 22, no. 13, pp. 4827–4835, 2002. View at Publisher · View at Google Scholar · View at Scopus
  127. R. A. Greenwald and K. Kirkwood, “Adult periodontitis as a model for rheumatoid arthritis (with emphasis on treatment strategies),” Journal of Rheumatology, vol. 26, no. 8, pp. 1650–1653, 1999. View at Google Scholar · View at Scopus
  128. F. B. Mercado, R. I. Marshall, and P. M. Bartold, “Inter-relationships between rheumatoid arthritis and periodontal disease: a review,” Journal of Clinical Periodontology, vol. 30, no. 9, pp. 761–772, 2003. View at Publisher · View at Google Scholar · View at Scopus
  129. Q. Li, H. Yu, R. Zinna et al., “Silencing mitogen-activated protein kinase-activated protein kinase-2 arrests inflammatory bone loss,” Journal of Pharmacology and Experimental Therapeutics, vol. 336, no. 3, pp. 633–642, 2011. View at Publisher · View at Google Scholar
  130. S. M. Keyse, “Dual-specificity MAP kinase phosphatases (MKPs) and cancer,” Cancer and Metastasis Reviews, vol. 27, no. 2, pp. 253–261, 2008. View at Publisher · View at Google Scholar · View at Scopus
  131. J. J. Wu and A. M. Bennett, “Essential role for mitogen-activated protein (MAP) kinase phosphatase-1 in stress-responsive MAP kinase and cell survival signaling,” The Journal of Biological Chemistry, vol. 280, no. 16, pp. 16461–16466, 2005. View at Publisher · View at Google Scholar · View at Scopus
  132. P. Chen, J. Li, J. Barnes, G. C. Kokkonen, J. C. Lee, and Y. Liu, “Restraint of proinflammatory cytokine biosynthesis by mitogen-activated protein kinase phosphatase-1 in lipopolysaccharide-stimulated macrophages,” Journal of Immunology, vol. 169, no. 11, pp. 6408–6416, 2002. View at Google Scholar · View at Scopus
  133. E. G. Shepherd, Q. Zhao, S. E. Welty, T. N. Hansen, C. V. Smith, and Y. Liu, “The function of mitogen-activated protein kinase phosphatase-1 in peptidoglycan-stimulated macrophages,” The Journal of Biological Chemistry, vol. 279, no. 52, pp. 54023–54031, 2004. View at Publisher · View at Google Scholar · View at Scopus
  134. M. Nimah, B. Zhao, A. G. Denenberg et al., “Contribution of MKP-1 regulation of p38 to endotoxin tolerance,” Shock, vol. 23, no. 1, pp. 80–87, 2005. View at Publisher · View at Google Scholar · View at Scopus
  135. Q. Zhao, E. G. Shepherd, M. E. Manson, L. D. Nelin, A. Sorokin, and Y. Liu, “The role of mitogen-activated protein kinase phosphatase-1 in the response of alveolar macrophages to lipopolysaccharide: attenuation of proinflammatory cytokine biosynthesis via feedback control of p38,” The Journal of Biological Chemistry, vol. 280, no. 9, pp. 8101–8108, 2005. View at Publisher · View at Google Scholar · View at Scopus
  136. H. Chi, S. P. Barry, R. J. Roth et al., “Dynamic regulation of pro- and anti-inflammatory cytokines by MAPK phosphatase 1 (MKP-1) in innate immune responses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 7, pp. 2274–2279, 2006. View at Publisher · View at Google Scholar · View at Scopus
  137. M. Hammer, J. Mages, H. Dietrich et al., “Dual specificity phosphatase 1 (DUSP1) regulates a subset of LPS-induced genes and protects mice from lethal endotoxin shock,” Journal of Experimental Medicine, vol. 203, no. 1, pp. 15–20, 2006. View at Publisher · View at Google Scholar · View at Scopus
  138. K. V. Salojin, I. B. Owusu, K. A. Millerchip, M. Potter, K. A. Platt, and T. Oravecz, “Essential role of MAPK phosphatase-1 in the negative control of innate immune responses,” Journal of Immunology, vol. 176, no. 3, pp. 1899–1907, 2006. View at Google Scholar · View at Scopus
  139. R. Sartori, F. Li, and K. L. Kirkwood, “MAP kinase phosphatase-1 protects against inflammatory bone loss,” Journal of Dental Research, vol. 88, no. 12, pp. 1125–1130, 2009. View at Publisher · View at Google Scholar · View at Scopus
  140. H. Yu, Q. Li, B. Herbert et al., “Anti-inflammatory effect of MAPK phosphatase-1 local gene transfer in inflammatory bone loss,” Gene Therapy, vol. 18, no. 4, pp. 344–353, 2011. View at Publisher · View at Google Scholar · View at Scopus
  141. C. S. Patil and K. L. Kirkwood, “P38 MAPK signaling in oral-related diseases,” Journal of Dental Research, vol. 86, no. 9, pp. 812–825, 2007. View at Publisher · View at Google Scholar · View at Scopus
  142. T. A. Hamilton, M. Novotny, S. Datta et al., “Chemokine and chemoattractant receptor expression: post-transcriptional regulation,” Journal of Leukocyte Biology, vol. 82, no. 2, pp. 213–219, 2007. View at Publisher · View at Google Scholar · View at Scopus
  143. T. A. Hamilton, Y. Ohmori, and J. Tebo, “Regulation of chemokine expression by antiinflammatory cytokines,” Immunologic Research, vol. 25, no. 3, pp. 229–245, 2002. View at Publisher · View at Google Scholar · View at Scopus
  144. G. Stoecklin, P. Stoeckle, M. Lu, O. Muehlemann, and C. Moroni, “Cellular mutants define a common mRNA degradation pathway targeting cytokine AU-rich elements,” RNA, vol. 7, no. 11, pp. 1578–1588, 2001. View at Google Scholar · View at Scopus
  145. W. S. Lai, J. S. Parker, S. F. Grissom, D. J. Stumpo, and P. J. Blackshear, “Novel mRNA targets for tristetraprolin (TTP) identified by global analysis of stabilized transcripts in TTP-deficient fibroblasts,” Molecular and Cellular Biology, vol. 26, no. 24, pp. 9196–9208, 2006. View at Publisher · View at Google Scholar · View at Scopus
  146. E. Carballo, W. S. Lai, and P. J. Blackshear, “Evidence that tristetraprolin is a physiological regulator of granulocyte-macrophage colony-stimulating factor messenger RNA deadenylation and stability,” Blood, vol. 95, no. 6, pp. 1891–1899, 2000. View at Google Scholar · View at Scopus
  147. W. I. S. Lai, E. Carballo, J. R. Strum, E. A. Kennington, R. S. Phillips, and P. J. Blackshear, “Evidence that tristetraprolin binds to AU-rich elements and promotes the deadenylation and destabilization of tumor necrosis factor alpha mRNA,” Molecular and Cellular Biology, vol. 19, no. 6, pp. 4311–4323, 1999. View at Google Scholar · View at Scopus
  148. C. S. Patil, M. Liu, W. Zhao et al., “Targeting mRNA Stability Arrests Inflammatory Bone Loss,” Molecular Therapy, vol. 16, no. 10, pp. 1657–1664, 2008. View at Publisher · View at Google Scholar
  149. W. Zhao, M. Liu, and K. L. Kirkwood, “p38α stabilizes interleukin-6 mRNA via multiple AU-rich elements,” The Journal of Biological Chemistry, vol. 283, no. 4, pp. 1778–1785, 2008. View at Publisher · View at Google Scholar · View at Scopus
  150. W. Zhao, M. Liu, N. J. D'Silva, and K. L. Kirkwood, “Tristetraprolin regulates interleukin-6 expression through p38 MAPK-dependent affinity changes with mRNA 3 untranslated region,” Journal of Interferon and Cytokine Research, vol. 31, no. 8, pp. 629–637, 2011. View at Publisher · View at Google Scholar
  151. C. Rossa Jr., M. Liu, and K. L. Kirkwood, “A dominant function of p38 mitogen-activated protein kinase signaling in receptor activator of nuclear factor-κB ligand expression and osteoclastogenesis induction by Aggregatibacter actinomycetemcomitans and Escherichia coli lipopolysaccharide,” Journal of Periodontal Research, vol. 43, no. 2, pp. 201–211, 2008. View at Publisher · View at Google Scholar · View at Scopus
  152. L. Franchi, J. H. Park, M. H. Shaw et al., “Intracellular NOD-like receptors in innate immunity, infection and disease,” Cellular Microbiology, vol. 10, no. 1, pp. 1–8, 2008. View at Publisher · View at Google Scholar · View at Scopus
  153. Q. Li, H. Yu, R. Zinna et al., “Silencing mitogen-activated protein kinase-activated protein kinase-2 arrests inflammatory bone loss,” Journal of Pharmacology and Experimental Therapeutics, vol. 336, no. 3, pp. 633–642, 2011. View at Publisher · View at Google Scholar