Table of Contents
Journal of Signal Transduction
Volume 2012, Article ID 473410, 11 pages
http://dx.doi.org/10.1155/2012/473410
Research Article

Contractile Activity Regulates Inducible Nitric Oxide Synthase Expression and NOi Production in Cardiomyocytes via a FAK-Dependent Signaling Pathway

1Cardiovascular Institute, Loyola University Chicago Stritch School of Medicine, 2160 South First Avenue, Maywood, IL 60153, USA
2Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA

Received 29 March 2012; Revised 6 June 2012; Accepted 6 June 2012

Academic Editor: J. Adolfo García-Sáinz

Copyright © 2012 Miensheng Chu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. L. Balligand, D. Ungureanu-Longrois, W. W. Simmons et al., “Cytokine-inducible nitric oxide synthase (iNOS) expression in cardiac myocytes. Characterization and regulation of iNOS expression and detection of iNOS activity in single cardiac myocytes in vitro,” Journal of Biological Chemistry, vol. 269, no. 44, pp. 27580–27588, 1994. View at Google Scholar · View at Scopus
  2. K. Y. Xu, D. L. Huso, T. M. Dawson, D. S. Bredt, and L. C. Becker, “Nitric oxide synthase in cardiac sarcoplasmic reticulum,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 2, pp. 657–662, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. O. Feron, L. Belhassen, L. Kobzik, T. W. Smith, R. A. Kelly, and T. Michel, “Endothelial nitric oxide synthase targeting to caveolae. Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells,” Journal of Biological Chemistry, vol. 271, no. 37, pp. 22810–22814, 1996. View at Publisher · View at Google Scholar · View at Scopus
  4. L. A. Barouch, R. W. Harrison, M. W. Skaf et al., “Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms,” Nature, vol. 416, no. 6878, pp. 337–339, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. P. B. Massion, O. Feron, C. Dessy, and J. L. Balligand, “Nitric oxide and cardiac function: ten years after, and continuing,” Circulation Research, vol. 93, no. 5, pp. 388–398, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Yamamoto, H. Tsutsui, H. Tagawa et al., “Role of myocyte nitric oxide in β-adrenergic hyporesponsiveness in heart failure,” Circulation, vol. 95, no. 5, pp. 1111–1114, 1997. View at Google Scholar · View at Scopus
  7. O. Gealekman, Z. Abassi, I. Rubinstein, J. Winaver, and O. Binah, “Role of myocardial inducible nitric oxide synthase in contractile dysfunction and β-adrenergic hyporesponsiveness in rats with experimental volume-overload heart failure,” Circulation, vol. 105, no. 2, pp. 236–243, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. M. T. Ziolo, L. S. Maier, V. Piacentino III, J. Bossuyt, S. R. Houser, and D. M. Bers, “Myocyte nitric oxide synthase 2 contributes to blunted β-adrenergic response in failing human hearts by decreasing Ca2+ Transients,” Circulation, vol. 109, no. 15, pp. 1886–1891, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Kobayashi, T. Higashi, K. Hara, H. Shirataki, and H. Matsuoka, “Effects of imidapril on NOS expression and myocardial remodelling in failing heart of Dahl salt-sensitive hypertensive rats,” Cardiovascular Research, vol. 44, no. 3, pp. 518–526, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. X. Liao, J. M. Liu, L. Du et al., “Nitric oxide signaling in stretch-induced apoptosis of neonatal rat cardiomyocytes,” The FASEB Journal, vol. 20, no. 11, pp. 1883–1885, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Knöll, M. Hoshijima, and K. Chien, “Cardiac mechanotransduction and implications for heart disease,” Journal of Molecular Medicine, vol. 81, no. 12, pp. 750–756, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. A. M. Samarel, “Costameres, focal adhesions, and cardiomyocyte mechanotransduction,” American Journal of Physiology, vol. 289, no. 6, pp. H2291–H2301, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. B. P. Eliceiri, “Integrin and growth factor receptor crosstalk,” Circulation Research, vol. 89, no. 12, pp. 1104–1110, 2001. View at Google Scholar · View at Scopus
  14. E. N. Dedkova, Y. G. Wang, X. Ji, L. A. Blatter, A. M. Samarel, and S. L. Lipsius, “Signalling mechanisms in contraction-mediated stimulation of intracellular NO production in cat ventricular myocytes,” Journal of Physiology, vol. 580, no. 1, pp. 327–345, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. A. M. Samarel and G. L. Engelmann, “Contractile activity modulates myosin heavy chain-β expression in neonatal rat heart cells,” American Journal of Physiology, vol. 261, no. 4, pp. H1067–H1077, 1991. View at Google Scholar · View at Scopus
  16. Y. E. Koshman, M. Chu, S. J. Engman, T. Kim, R. Iyengar, S. L. Robia et al., “Focal adhesion kinase-related nonkinase inhibits vascular smooth muscle cell invasion by focal adhesion targeting, tyrosine 168 phosphorylation, and competition for p130Cas binding,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, pp. 2432–2440, 2011. View at Google Scholar
  17. M. C. Heidkamp, A. L. Bayer, J. A. Kalina, D. M. Eble, and A. M. Samarel, “GFP-FRNK disrupts focal adhesions and induces anoikis in neonatal rat ventricular myocytes,” Circulation Research, vol. 90, no. 12, pp. 1282–1289, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Sakurai, Y. Sonoda, E. Koguchi, N. Shinoura, H. Hamada, and T. Kasahara, “Mutated focal adhesion kinase induces apoptosis in a human glioma cell line, T98G,” Biochemical and Biophysical Research Communications, vol. 293, no. 1, pp. 174–181, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Sorokin, P. Kozlowski, L. Graves, and A. Philip, “Protein-tyrosine kinase pyk2 mediates endothelin-induced p38MAPK activation in glomerular mesangial cells,” Journal of Biological Chemistry, vol. 276, no. 24, pp. 21521–21528, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. D. M. Eble, J. B. Strait, G. Govindarajan, J. Lou, K. L. Byron, and A. M. Samarel, “Endothelin-induced cardiac myocyte hypertrophy: role for focal adhesion kinase,” American Journal of Physiology, vol. 278, no. 5, pp. H1695–H1707, 2000. View at Google Scholar · View at Scopus
  21. P. Y. Chan, S. B. Kanner, G. Whitney, and A. Aruffo, “A transmembrane-anchored chimeric focal adhesion kinase is constitutively activated and phosphorylated at tyrosine residues identical to PP125FAK,” Journal of Biological Chemistry, vol. 269, no. 32, pp. 20567–20574, 1994. View at Google Scholar · View at Scopus
  22. Y. Fujio, T. Nguyen, D. Wencker, R. N. Kitsis, and K. Walsh, “Akt promotes survival of cardiomyocytes in vitro and protects against lschemia-reperfusion injury in mouse heart,” Circulation, vol. 101, no. 6, pp. 660–667, 2000. View at Google Scholar · View at Scopus
  23. M. C. Heidkamp, A. L. Bayer, J. L. Martin, and A. M. Samarel, “Differential activation of mitogen-activated protein kinase cascades and apoptosis by protein kinase C ε and δ in neonatal rat ventricular myocytes,” Circulation Research, vol. 89, no. 10, pp. 882–890, 2001. View at Google Scholar · View at Scopus
  24. D. D. Schlaepfer and T. Hunter, “Evidence for in vivo phosphorylation of the Grb2 SH2-domain binding site on focal adhesion kinase by Src-family protein-tyrosine kinases,” Molecular and Cellular Biology, vol. 16, no. 10, pp. 5623–5633, 1996. View at Google Scholar · View at Scopus
  25. H. Kojima, N. Nakatsubo, K. Kikuchi et al., “Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins,” Analytical Chemistry, vol. 70, no. 13, pp. 2446–2453, 1998. View at Google Scholar · View at Scopus
  26. N. Nakatsubo, H. Kojima, K. Kikuchi et al., “Direct evidence of nitric oxide production from bovine aortic endothelial cells using new fluorescence indicators: diaminofluoresceins,” FEBS Letters, vol. 427, no. 2, pp. 263–266, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. E. N. Dedkova, Y. G. Wang, L. A. Blatter, and S. L. Lipsius, “Nitric oxide signalling by selective β2-adrenoceptor stimulation prevents ACh-induced inhibition of β2-stimulated Ca2+ current in cat atrial myocytes,” Journal of Physiology, vol. 542, no. 3, pp. 711–723, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. K. L. Byron, J. L. Puglisi, J. R. Holda, D. Eble, and A. M. Samarel, “Myosin heavy chain turnover in cultured neonatal rat heart cells: effects of [Ca2+]i and contractile activity,” American Journal of Physiology, vol. 271, no. 5, pp. C1447–C1456, 1996. View at Google Scholar · View at Scopus
  29. M. Qi, J. L. Puglisi, K. L. Byron et al., “Myosin heavy chain gene expression in neonatal rat heart cells: effects of [Ca2+]i and contractile activity,” American Journal of Physiologys, vol. 273, no. 2, pp. C394–C403, 1997. View at Google Scholar · View at Scopus
  30. D. M. Eble, M. Qi, S. Waldschmidt, P. A. Lucchesi, K. L. Byron, and A. M. Samarel, “Contractile activity is required for sarcomeric assembly in phenylephrine-induced cardiac myocyte hypertrophy,” American Journal of Physiology, vol. 274, no. 5, pp. C1226–C1237, 1998. View at Google Scholar · View at Scopus
  31. M. G. V. Petroff, S. H. Kim, S. Pepe et al., “Endogenous nitric oxide mechanisms mediate the stretch dependence of Ca2+ release in cardiomyocytes,” Nature Cell Biology, vol. 3, no. 10, pp. 867–873, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. J. K. Slack-Davis, K. H. Martin, R. W. Tilghman et al., “Cellular characterization of a novel focal adhesion kinase inhibitor,” Journal of Biological Chemistry, vol. 282, no. 20, pp. 14845–14852, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. C. J. Vlahos, W. F. Matter, K. Y. Hui, and R. F. Brown, “A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002),” Journal of Biological Chemistry, vol. 269, no. 7, pp. 5241–5248, 1994. View at Google Scholar · View at Scopus
  34. H. Wei and R. S. Vander Heide, “Heat stress activates AKT via focal adhesion kinase-mediated pathway in neonatal rat ventricular myocytes,” American Journal of Physiology, vol. 295, no. 2, pp. H561–H568, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. D. P. Del Re, S. Miyamoto, and J. H. Brown, “Focal adhesion kinase as a RhoA-activable signaling scaffold mediating akt activation and cardiomyocyte protection,” Journal of Biological Chemistry, vol. 283, no. 51, pp. 35622–35629, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. H. C. Chen and J. L. Guan, “Stimulation of phosphatidylinositol 3'-kinase association with focal adhesion kinase by platelet-derived growth factor,” Journal of Biological Chemistry, vol. 269, no. 49, pp. 31229–31233, 1994. View at Google Scholar · View at Scopus
  37. H. C. Chen and J. L. Guan, “Association of focal adhesion kinase with its potential substrate phosphatidylinositol 3-kinase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 21, pp. 10148–10152, 1994. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Bachelot, L. Rameh, T. Parsons, and L. C. Cantley, “Association of phosphatidylinositol 3-kinase, via the SH2 domains of p85, with focal adhesion kinase in polyoma middle t-transformed fibroblasts,” Biochimica et Biophysica Acta, vol. 1311, no. 1, pp. 45–52, 1996. View at Publisher · View at Google Scholar · View at Scopus
  39. H. C. Chen, P. A. Appeddu, H. Isoda, and J. L. Guan, “Phosphorylation of tyrosine 397 in focal adhesion kinase is required for binding phosphatidylinositol 3-kinase,” Journal of Biological Chemistry, vol. 271, no. 42, pp. 26329–26334, 1996. View at Publisher · View at Google Scholar · View at Scopus
  40. H. R. Reiske, S. C. Kao, L. A. Cary, J. L. Guan, J. F. Lai, and H. C. Chen, “Requirement of phosphatidylinositol 3-kinase in focal adhesion kinase-promoted cell migration,” Journal of Biological Chemistry, vol. 274, no. 18, pp. 12361–12366, 1999. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Xia, R. S. Nho, J. Kahm, J. Kleidon, and C. A. Henke, “Focal adhesion kinase is upstream of phosphatidylinositol 3-kinase/Akt in regulating fibroblast survival in response to contraction of type I collagen matrices via a β1 integrin viability signaling pathway,” Journal of Biological Chemistry, vol. 279, no. 31, pp. 33024–33034, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. D. L. Hart, M. C. Heidkamp, R. Iyengar et al., “CRNK gene transfer improves function and reverses the myosin heavy chain isoenzyme switch during post-myocardial infarction left ventricular remodeling,” Journal of Molecular and Cellular Cardiology, vol. 45, no. 1, pp. 93–105, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Dimmeler, I. Fleming, B. Fisslthaler, C. Hermann, R. Busse, and A. M. Zeiher, “Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation,” Nature, vol. 399, no. 6736, pp. 601–605, 1999. View at Publisher · View at Google Scholar · View at Scopus
  44. D. Fulton, J. P. Gratton, T. J. McCabe et al., “Regulation of endothelium-derived nitric oxide production by the protein kinase Akt,” Nature, vol. 399, no. 6736, pp. 597–601, 1999. View at Publisher · View at Google Scholar · View at Scopus
  45. W. M. Kuebler, U. Uhlig, T. Goldmann et al., “Stretch activates nitric oxide production in pulmonary vascular endothelial cells in situ,” American Journal of Respiratory and Critical Care Medicine, vol. 168, no. 11, pp. 1391–1398, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. D. J. Pinsky, S. Patton, S. Mesaros et al., “Mechanical transduction of nitric oxide synthesis in the beating heart,” Circulation Research, vol. 81, no. 3, pp. 372–379, 1997. View at Google Scholar · View at Scopus
  47. B. D. Prendergast, V. F. Sagach, and A. M. Shah, “Basal release of nitric oxide augments the Frank-Starling response in the isolated heart,” Circulation, vol. 96, no. 4, pp. 1320–1329, 1997. View at Google Scholar · View at Scopus
  48. I. Fleming, B. Fisslthaler, S. Dimmeler, B. E. Kemp, and R. Busse, “Phosphorylation of Thr495 regulates Ca2+/calmodulin-dependent endothelial nitric oxide synthase activity,” Circulation Research, vol. 88, no. 11, pp. E68–E75, 2001. View at Google Scholar · View at Scopus
  49. T. H. Cheng, J. J. W. Chen, N. L. Shih et al., “Mechanical stretch induces endothelial nitric oxide synthase gene expression in neonatal rat cardiomyocytes,” Clinical and Experimental Pharmacology and Physiology, vol. 36, no. 5-6, pp. 559–566, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. W. A. Hines, J. Thorburn, and A. Thorburn, “Cell density and contraction regulate p38 MAP kinase-dependent responses in neonatal rat cardiac myocytes,” American Journal of Physiology, vol. 277, no. 1, pp. H331–H341, 1999. View at Google Scholar · View at Scopus
  51. N. D. Roe and J. Ren, “Akt2 knockout mitigates chronic iNOS inhibition-induced cardiomyocyte atrophy and contractile dysfunction despite persistent insulin resistance,” Toxicology Letters, vol. 207, pp. 222–231, 2011. View at Google Scholar
  52. K. G. Franchini, A. S. Torsoni, P. H. A. Soares, and M. J. A. Saad, “Early activation of the multicomponent signaling complex associated with focal adhesion kinase induced by pressure overload in the rat heart,” Circulation Research, vol. 87, no. 7, pp. 558–565, 2000. View at Google Scholar · View at Scopus
  53. Y. G. Wang, X. Ji, M. Pabbidi, A. M. Samarel, and S. L. Lipsius, “Laminin acts via focal adhesion kinase/phosphatidylinositol-3′kinase/protein kinase B to down-regulate β1-adrenergic receptor signalling in cat atrial myocytes,” Journal of Physiology, vol. 587, no. 3, pp. 541–550, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. Taniyama, D. S. Weber, P. Rocic et al., “Pyk2- and src-dependent tyrosine phosphorylation of PDK1 regulates focal adhesions,” Molecular and Cellular Biology, vol. 23, no. 22, pp. 8019–8029, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Guo, A. Sabri, H. Elouardighi, V. Rybin, and S. F. Steinberg, “α1-adrenergic receptors activate AKT via a Pyk2/PDK-1 pathway that is tonically inhibited by novel protein kinase C isoforms in cardiomyocytes,” Circulation Research, vol. 99, no. 12, pp. 1367–1375, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. Q. Feng, X. Lu, D. L. Jones, J. Shen, and J. M. O. Arnold, “Increased inducible nitric oxide synthase expression contributes to myocardial dysfunction and higher mortality after myocardial infarction in mice,” Circulation, vol. 104, no. 6, pp. 700–704, 2001. View at Google Scholar · View at Scopus
  57. F. Sam, D. B. Sawyer, Z. Xie et al., “Mice lacking inducible nitric oxide synthase have improved left ventricular contractile function and reduced apoptotic cell death late after myocardial infarction,” Circulation Research, vol. 89, no. 4, pp. 351–356, 2001. View at Google Scholar · View at Scopus
  58. Y. H. Liu, O. A. Carretero, O. H. Cingolani et al., “Role of inducible nitric oxide synthase in cardiac function and remodeling in mice with heart failure due to myocardial infarction,” American Journal of Physiology, vol. 289, no. 6, pp. H2616–H2623, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. P. Zhang, X. Xu, X. Hu, E. D. van Deel, G. Zhu, and Y. Chen, “Inducible nitric oxide synthase deficiency protects the heart from systolic overload-induced ventricular hypertrophy and congestive heart failure,” Circulation Research, vol. 100, no. 7, pp. 1089–1098, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. I. N. Mungrue, R. Gros, X. You et al., “Cardiomyocyte overexpression of iNOS in mice results in peroxynitrite generation, heart block, and sudden death,” Journal of Clinical Investigation, vol. 109, no. 6, pp. 735–743, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. S. P. Jones, J. J. M. Greer, P. D. Ware, J. Yang, K. Walsh, and D. J. Lefer, “Deficiency of iNOS does not attenuate severe congestive heart failure in mice,” American Journal of Physiology, vol. 288, no. 1, pp. H365–H370, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. R. Bolli, “Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and preconditioning: an overview of a decade of research,” Journal of Molecular and Cellular Cardiology, vol. 33, no. 11, pp. 1897–1918, 2001. View at Publisher · View at Google Scholar · View at Scopus
  63. S. P. Jones and R. Bolli, “The ubiquitous role of nitric oxide in cardioprotection,” Journal of Molecular and Cellular Cardiology, vol. 40, no. 1, pp. 16–23, 2006. View at Publisher · View at Google Scholar · View at Scopus