Table of Contents
Journal of Signal Transduction
Volume 2012, Article ID 645721, 8 pages
http://dx.doi.org/10.1155/2012/645721
Research Article

Prolonged Action Potential and After depolarizations Are Not due to Changes in Potassium Currents in NOS3 Knockout Ventricular Myocytes

1Department of Physiology and Cell Biology, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43221, USA
2College of Pharmacy, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
3Translational Medicine Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA

Received 20 April 2012; Revised 13 July 2012; Accepted 16 July 2012

Academic Editor: Christopher Ahern

Copyright © 2012 Honglan Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. T. Ziolo and D. M. Bers, “The real estate of NOS signaling location, location, location,” Circulation Research, vol. 92, no. 12, pp. 1279–1281, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. L. A. Barouch, R. W. Harrison, M. W. Skaf et al., “Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms,” Nature, vol. 416, no. 6878, pp. 337–339, 2002. View at Google Scholar
  3. M. T. Ziolo, M. J. Kohr, and H. Wang, “Nitric oxide signaling and the regulation of myocardial function,” Journal of Molecular and Cellular Cardiology, vol. 45, no. 5, pp. 625–632, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Wang, M. J. Kohr, C. J. Traynham, D. G. Wheeler, P. M. L. Janssen, and M. T. Ziolo, “Neuronal nitric oxide synthase signaling within cardiac myocytes targets phospholamban,” American Journal of Physiology, vol. 294, no. 6, pp. C1566–C1575, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Wang, M. J. Kohr, D. G. Wheeler, and M. T. Ziolo, “Endothelial nitric oxide synthase decreases β-adrenergic responsiveness via inhibition of the L-type Ca2+ current,” American Journal of Physiology, vol. 294, no. 3, pp. H1473–H1480, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Wang, M. J. Kohr, C. J. Traynham, and M. T. Ziolo, “Phosphodiesterase 5 restricts NOS3/Soluble guanylate cyclase signaling to L-type Ca2+ current in cardiac myocytes,” Journal of Molecular and Cellular Cardiology, vol. 47, no. 2, pp. 304–314, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. J. M. Nerbonne and R. S. Kass, “Molecular physiology of cardiac repolarization,” Physiological Reviews, vol. 85, no. 4, pp. 1205–1253, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. J. M. Nerbonne, “Molecular basis of functional voltage-gated K+ channel diversity in the mammalian myocardium,” Journal of Physiology, vol. 525, no. 2, pp. 285–298, 2000. View at Google Scholar · View at Scopus
  9. C. X. Bai, C. Takahashi, H. Masumiya, T. Sawanobori, and T. Furukawa, “Nitric oxide-dependent modulation of the delayed rectifier K+ current and the L-type Ca2+ current by ginsenoside Re, an ingredient of Panax ginseng, in guinea-pig cardiomyocytes,” British Journal of Pharmacology, vol. 142, no. 3, pp. 567–575, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. C. X. Bai, I. Namekata, J. Kurokawa, H. Tanaka, K. Shigenobu, and T. Furukawa, “Role of nitric oxide in Ca2+ sensitivity of the slowly activating delayed rectifier K+ current in cardiac myocytes,” Circulation Research, vol. 96, no. 1, pp. 64–72, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. S. O. Marx, J. Kurokawa, S. Reiken et al., “Requirement of a macromolecular signaling complex for β adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel,” Science, vol. 295, no. 5554, pp. 496–499, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Gómez, L. Núñez, M. Vaquero et al., “Nitric oxide inhibits Kv4.3 and human cardiac transient outward potassium current (Ito1),” Cardiovascular Research, vol. 80, no. 3, pp. 375–384, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Gómez, R. Caballero, A. Barana et al., “Nitric oxide increases cardiac IK1 by nitrosylation of cysteine 76 of Kir2.1 Channels,” Circulation Research, vol. 105, no. 4, pp. 383–392, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. S. M. Pogwizd, K. Schlotthauer, L. Li, W. Yuan, and D. M. Bers, “Arrhythmogenesis and contractile dysfunction in heart failure: roles of sodium-calcium exchange, inward rectifier potassium current, and residual β-adrenergic responsiveness,” Circulation Research, vol. 88, no. 11, pp. 1159–1167, 2001. View at Google Scholar · View at Scopus
  15. M. Maruyama, S. F. Lin, Y. Xie et al., “Genesis of phase 3 early afterdepolarizations and triggered activity in acquired long-QT syndrome,” Circulation, vol. 4, no. 1, pp. 103–111, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Rakhit, C. T. Maguire, H. Wakimoto et al., “In vivo electrophysiologic studies in endothelial nitric oxide synthase (eNOS)-deficient mice,” Journal of Cardiovascular Electrophysiology, vol. 12, no. 11, pp. 1295–1301, 2001. View at Google Scholar · View at Scopus
  17. I. Kubota, X. Han, D. J. Opel et al., “Increased susceptibility to development of triggered activity in myocytes from mice with targeted disruption of endothelial nitric oxide synthase,” Journal of Molecular and Cellular Cardiology, vol. 32, no. 7, pp. 1239–1248, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. E. G. Shesely, N. Maeda, H. S. Kim et al., “Elevated blood pressures in mice lacking endothelial nitric oxide synthase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 23, pp. 13176–13181, 1996. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Sridhar, S. J. Dech, V. A. Lacombe et al., “Abnormal diastolic currents in ventricular myocytes from spontaneous hypertensive heart failure rats,” American Journal of Physiology, vol. 291, no. 5, pp. H2192–H2198, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. A. W. Trafford, M. E. Díaz, and D. A. Eisner, “A novel, rapid and reversible method to measure Ca buffering and time-course of total sarcoplasmic reticulum Ca content in cardiac ventricular myocytes,” Pflugers Archiv European Journal of Physiology, vol. 437, no. 3, pp. 501–503, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. B. R. Choi, F. Burton, and G. Salama, “Cytosolic Ca2+ triggers early afterdepolarizations and Torsade de Pointes in rabbit hearts with type 2 long QT syndrome,” Journal of Physiology, vol. 543, no. 2, pp. 615–631, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. D. M. Bers, “Calcium cycling and signaling in cardiac myocytes,” Annual Review of Physiology, vol. 70, pp. 23–49, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. L. A. Venetucci, A. W. Trafford, S. C. O'Neill, and D. A. Eisner, “The sarcoplasmic reticulum and arrhythmogenic calcium release,” Cardiovascular Research, vol. 77, no. 2, pp. 285–292, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. M. T. Ziolo, H. Katoh, and D. M. Bers, “Positive and negative effects of nitric oxide on Ca2+ sparks: influence of β-adrenergic stimulation,” American Journal of Physiology, vol. 281, no. 6, pp. H2295–H2303, 2001. View at Google Scholar · View at Scopus
  25. H. C. Champion, D. Georgakopoulos, E. Takimoto, T. Isoda, Y. Wang, and D. A. Kass, “Modulation of in vivo cardiac function by myocyte-specific nitric oxide synthase-3,” Circulation Research, vol. 94, no. 5, pp. 657–663, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Gödecke, T. Heinicke, A. Kamkin et al., “Inotropic response to β-adrenergic receptor stimulation and anti-adrenergic effect of ACh in endothelial NO synthase-deficient mouse hearts,” Journal of Physiology, vol. 532, no. 1, pp. 195–204, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Gyurko, P. Kuhlencordt, M. C. Fishman, and P. L. Huang, “Modulation of mouse cardiac function in vivo by eNOS and ANP,” American Journal of Physiology, vol. 278, no. 3, pp. H971–H981, 2000. View at Google Scholar · View at Scopus
  28. P. Varghese, R. W. Harrison, R. A. Lofthouse, D. Georgakopoulos, D. E. Berkowitz, and J. M. Hare, “β3-adrenoceptor deficiency blocks nitric oxide-dependent inhibition of myocardial contractility,” Journal of Clinical Investigation, vol. 106, no. 5, pp. 697–703, 2000. View at Google Scholar · View at Scopus
  29. W. Guo, H. Xu, B. London, and J. M. Nerbonne, “Molecular basis of transient outward K+ current diversity in mouse ventricular myocytes,” Journal of Physiology, vol. 521, no. 3, pp. 587–599, 1999. View at Google Scholar · View at Scopus
  30. H. Xu, D. M. Barry, H. Li, S. Brunet, W. Guo, and J. M. Nerbonne, “Attenuation of the slow component of delayed rectification, action potential prolongation, and triggered activity in mice expressing a dominant-negative Kv2 α subunit,” Circulation Research, vol. 85, no. 7, pp. 623–633, 1999. View at Google Scholar · View at Scopus
  31. H. Xu, W. Guo, and J. M. Nerbonne, “Four kinetically distinct depolarization-activated K+ currents in adult mouse ventricular myocytes,” Journal of General Physiology, vol. 113, no. 5, pp. 661–678, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Zhou, A. Jeron, B. London, X. Han, and G. Koren, “Characterization of a slowly inactivating outward current in adult mouse ventricular myocytes,” Circulation Research, vol. 83, no. 8, pp. 806–814, 1998. View at Google Scholar · View at Scopus
  33. D. M. Bers, Excitation-Contraction Coupling and Cardiac Contractile Force, Kluwer Academic, Dordrecht, The Netherlands, 2001.
  34. C. Pott, K. D. Philipson, and J. I. Goldhaber, “Excitation-contraction coupling in Na+-Ca2+ exchanger knockout mice: reduced transsarcolemmal Ca2+ flux,” Circulation Research, vol. 97, no. 12, pp. 1288–1295, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. N. Saegusa, E. Moorhouse, R. D. Vaughan-Jones, and K. W. Spitzer, “Influence of pH on Ca(2)(+) current and its control of electrical and Ca(2)(+) signaling in ventricular myocytes,” The Journal of General Physiology, vol. 138, pp. 537–559, 2011. View at Google Scholar
  36. S. M. Pogwizd and D. M. Bers, “Cellular basis of triggered arrhythmias in heart failure,” Trends in Cardiovascular Medicine, vol. 14, no. 2, pp. 61–66, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. E. Marban, S. W. Robinson, and W. G. Wier, “Mechanisms of arrhythmogenic delayed and early afterdepolarizations in ferret ventricular muscle,” Journal of Clinical Investigation, vol. 78, no. 5, pp. 1185–1192, 1986. View at Google Scholar · View at Scopus
  38. M. E. Díaz, A. W. Trafford, S. C. O'Neill, and D. A. Eisner, “Measurement of sarcoplasmic reticulum Ca2+ content and sarcolemmal Ca2+ fluxes in isolated rat ventricular myocytes during spontaneous Ca2+ release,” Journal of Physiology, vol. 501, pp. 3–16, 1997. View at Publisher · View at Google Scholar · View at Scopus
  39. D. Tweedie, S. E. Harding, and K. T. MacLeod, “Sarcoplasmic reticulum Ca content, sarcolemmal Ca influx and the genesis of arrhythmias in isolated guinea-pig cardiomyocytes,” Journal of Molecular and Cellular Cardiology, vol. 32, no. 2, pp. 261–272, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. C. T. January and J. M. Riddle, “Early afterdepolarizations: mechanism of induction and block. A role for L-type Ca2+ current,” Circulation Research, vol. 64, no. 5, pp. 977–990, 1989. View at Google Scholar · View at Scopus
  41. P. G. A. Volders, A. Kulcsár, M. A. Vos et al., “Similarities between early and delayed afterdepolarizations induced by isoproterenol in canine ventricular myocytes,” Cardiovascular Research, vol. 34, no. 2, pp. 348–359, 1997. View at Publisher · View at Google Scholar · View at Scopus
  42. Z. Zhao, H. Wen, N. Fefelova et al., “Revisiting the ionic mechanisms of early afterdepolarizations in cardiomyocytes: predominant by Ca waves or Ca currents?” American Journal of Physiology, vol. 302, no. 8, pp. 1636–1644, 2012. View at Google Scholar
  43. M. Tang, X. Zhang, Y. Li et al., “Enhanced basal contractility but reduced excitation-contraction coupling efficiency and β-adrenergic reserve of hearts with increased Cav1.2 activity,” American Journal of Physiology, vol. 299, no. 2, pp. H519–H528, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Wagner, N. Dybkova, E. C. L. Rasenack et al., “Ca2+/calmodulin-dependent protein kinase II regulates cardiac Na+ channels,” Journal of Clinical Investigation, vol. 116, no. 12, pp. 3127–3138, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. H. C. Champion, M. W. Skaf, and J. M. Hare, “Role of nitric oxide in the pathophysiology of heart failure,” Heart Failure Reviews, vol. 8, no. 1, pp. 35–46, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. T. Damy, P. Ratajczak, A. M. Shah et al., “Increased neuronal nitric oxide synthase-derived NO production in the failing human heart,” The Lancet, vol. 363, no. 9418, pp. 1365–1367, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Tsukamoto, K. Morita, M. Naya et al., “Decreased myocardial β-adrenergic receptor density in relation to increased sympathetic tone in patients with nonischemic cardiomyopathy,” Journal of Nuclear Medicine, vol. 48, no. 11, pp. 1777–1782, 2007. View at Publisher · View at Google Scholar · View at Scopus