Table of Contents
Journal of Signal Transduction
Volume 2012 (2012), Article ID 646354, 13 pages
http://dx.doi.org/10.1155/2012/646354
Review Article

Oxidative Stress, Mitochondrial Dysfunction, and Aging

Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA

Received 15 May 2011; Accepted 3 August 2011

Academic Editor: Paolo Pinton

Copyright © 2012 Hang Cui et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Hayflick, “How and why we age,” Experimental Gerontology, vol. 33, no. 7-8, pp. 639–653, 1998. View at Publisher · View at Google Scholar
  2. T. B. L. Kirkwood, “Understanding the odd science of aging,” Cell, vol. 120, no. 4, pp. 437–447, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Harman, “Aging: a theory based on free radical and radiation chemistry,” Journal of Gerontology, vol. 11, no. 3, pp. 298–300, 1956. View at Google Scholar · View at Scopus
  4. B. Halliwell, “Reactive oxygen species in living systems: source, biochemistry, and role in human disease,” American Journal of Medicine, vol. 91, no. 3, supplement 3, pp. 14S–22S, 1991. View at Google Scholar
  5. B. Chance, H. Sies, and A. Boveris, “Hydroperoxide metabolism in mammalian organs,” Physiological Reviews, vol. 59, no. 3, pp. 527–605, 1979. View at Google Scholar · View at Scopus
  6. R. G. Hansford, B. A. Hogue, and V. Mildaziene, “Dependence of H2O2 formation by rat heart mitochondria on substrate availability and donor age,” Journal of Bioenergetics and Biomembranes, vol. 29, no. 1, pp. 89–95, 1997. View at Publisher · View at Google Scholar · View at Scopus
  7. W. Dröge, “Free radicals in the physiological control of cell function,” Physiological Reviews, vol. 82, no. 1, pp. 47–95, 2002. View at Google Scholar · View at Scopus
  8. I. Fridovich, “Superoxide radical and superoxide dismutases,” Annual Review of Biochemistry, vol. 64, pp. 97–112, 1995. View at Google Scholar
  9. R. A. Weisiger and I. Fridovich, “Superoxide dismutase. Organelle specificity,” Journal of Biological Chemistry, vol. 248, no. 10, pp. 3582–3592, 1973. View at Google Scholar · View at Scopus
  10. R. A. Weisiger and I. Fridovich -, “Mitochondrial superoxide dismutase. Site of synthesis and intramitochondrial localization,” Journal of Biological Chemistry, vol. 248, no. 13, pp. 4793–4796, 1973. View at Google Scholar · View at Scopus
  11. A. Okado-Matsumoto and I. Fridovich, “Subcellular distribution of superoxide dismutases (SOD) in rat liver. Cu,Zn-SOD in mitochondria,” Journal of Biological Chemistry, vol. 276, no. 42, pp. 38388–38393, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. L. A. Sturtz, K. Diekert, L. T. Jensen, R. Lill, and V. C. Culotta, “A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage,” Journal of Biological Chemistry, vol. 276, no. 41, pp. 38084–38089, 2001. View at Google Scholar · View at Scopus
  13. J. F. Turrens, “Mitochondrial formation of reactive oxygen species,” Journal of Physiology, vol. 552, no. 2, pp. 335–344, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Holmgren, “Antioxidant function of thioredoxin and glutaredoxin systems,” Antioxidants and Redox Signaling, vol. 2, no. 4, pp. 811–820, 2000. View at Google Scholar · View at Scopus
  15. J. Nordberg and E. S. J. Arnér, “Reactive oxygen species, antioxidants, and the mammalian thioredoxin system,” Free Radical Biology and Medicine, vol. 31, no. 11, pp. 1287–1312, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. S. P. Hussain, L. J. Hofseth, and C. C. Harris, “Radical causes of cancer,” Nature Reviews Cancer, vol. 3, no. 4, pp. 276–285, 2003. View at Google Scholar · View at Scopus
  17. J. Liu, W. Qu, and M. B. Kadiiska, “Role of oxidative stress in cadmium toxicity and carcinogenesis,” Toxicology and Applied Pharmacology, vol. 238, no. 3, pp. 209–214, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. P. O'Neill and P. Wardman, “Radiation chemistry comes before radiation biology,” International Journal of Radiation Biology, vol. 85, no. 1, pp. 9–25, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. T. J. McMillan, E. Leatherman, A. Ridley, J. Shorrocks, S. E. Tobi, and J. R. Whiteside, “Cellular effects of long wavelength UV light (UVA) in mammalian cells,” Journal of Pharmacy and Pharmacology, vol. 60, no. 8, pp. 969–976, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. J. E. Klaunig and L. M. Kamendulis, “The Role of Oxidative Stress in Carcinogenesis,” Annual Review of Pharmacology and Toxicology, vol. 44, pp. 239–267, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. R. C. Fry, T. J. Begley, and L. D. Samson, “Genome-wide responses to DNA-damaging agents,” Annual Review of Microbiology, vol. 59, pp. 357–377, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. C. J. Norbury and I. D. Hickson, “Cellular responses to DNA damage,” Annual Review of Pharmacology and Toxicology, vol. 41, pp. 367–401, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Spry, T. Scott, H. Pierce, and J. A. D'Orazio, “DNA repair pathways and hereditary cancer susceptibility syndromes,” Frontiers in Bioscience, vol. 12, pp. 4191–4207, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Ercal, H. Gurer-Orhan, and N. Aykin-Burns, “Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage,” Current Topics in Medicinal Chemistry, vol. 1, no. 6, pp. 529–539, 2001. View at Google Scholar · View at Scopus
  25. P. Kovacic and J. A. Osuna Jr., “Mechanisms of anti-cancer agents: emphasis on oxidative stress and electron transfer,” Current Pharmaceutical Design, vol. 6, no. 3, pp. 277–309, 2000. View at Google Scholar · View at Scopus
  26. D. A. Wink, I. Hanbauer, M. B. Grisham et al., “Chemical biology of nitric oxide: regulation and protective and toxic mechanisms,” Current Topics in Cellular Regulation, vol. 34, pp. 159–187, 1996. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Finkel and N. J. Holbrook, “Oxidants, oxidative stress and the biology of ageing,” Nature, vol. 408, no. 6809, pp. 239–247, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. J. D. Lambeth, “NOX enzymes and the biology of reactive oxygen,” Nature Reviews Immunology, vol. 4, no. 3, pp. 181–189, 2004. View at Google Scholar · View at Scopus
  29. M. T. Quinn, M. C. B. Ammons, and F. R. DeLeo, “The expanding role of NADPH oxidases in health and disease: no longer just agents of death and destruction,” Clinical Science, vol. 111, no. 1, pp. 1–20, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. B. Chakravarti and D. N. Chakravarti, “Oxidative modification of proteins: age-related changes,” Gerontology, vol. 53, no. 3, pp. 128–139, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. M. S. Cooke, M. D. Evans, M. Dizdaroglu, and J. Lunec, “Oxidative DNA damage: mechanisms, mutation, and disease,” FASEB Journal, vol. 17, no. 10, pp. 1195–1214, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. M. D. Evans, M. Dizdaroglu, and M. S. Cooke, “Oxidative DNA damage and disease: induction, repair and significance,” Mutation Research, vol. 567, no. 1, pp. 1–61, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Filipcik, M. Cente, M. Ferencik, I. Hulin, and M. Novak, “The role of oxidative stress in the pathogenesis of Alzheimer's disease,” Bratislavské Lekárske Listy, vol. 107, no. 9-10, pp. 384–394, 2006. View at Google Scholar · View at Scopus
  34. P. Karihtala and Y. Soini, “Reactive oxygen species and antioxidant mechanisms in human tissues and their relation to malignancies,” APMIS, vol. 115, no. 2, pp. 81–103, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. H. E. Krokan, R. Standal, and G. Slupphaug, “DNA glycosylases in the base excision repair of DNA,” Biochemical Journal, vol. 325, no. 1, pp. 1–16, 1997. View at Google Scholar · View at Scopus
  36. M. Dizdaroglu, P. Jaruga, M. Birincioglu, and H. Rodriguez, “Free radical-induced damage to DNA: mechanisms and measurement,” Free Radical Biology and Medicine, vol. 32, no. 11, pp. 1102–1115, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. A. P. Grollman and M. Moriya, “Mutagenesis by 8-oxoguanine: an enemy within,” Trends in Genetics, vol. 9, no. 7, pp. 246–249, 1993. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Memisoglu and L. Samson, “Base excision repair in yeast and mammals,” Mutation Research, vol. 451, no. 1-2, pp. 39–51, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. D. M. Wilson III, T. M. Sofinowski, and D. R. McNeill, “Repair mechanisms for oxidative DNA damage,” Frontiers in Bioscience, vol. 8, pp. d963–d981, 2003. View at Google Scholar · View at Scopus
  40. S. Maynard, S. H. Schurman, C. Harboe, N. C. de Souza-Pinto, and V. A. Bohr, “Base excision repair of oxidative DNA damage and association with cancer and aging,” Carcinogenesis, vol. 30, no. 1, pp. 2–10, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. M. F. Alexeyev, “Is there more to aging than mitochondrial DNA and reactive oxygen species?” FEBS Journal, vol. 276, no. 20, pp. 5768–5787, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Sies, “Strategies of antioxidant defense,” European Journal of Biochemistry, vol. 215, pp. 213–219, 1993. View at Google Scholar
  43. M. V. Clément and S. Pervaiz, “Reactive oxygen intermediates regulate cellular response to apoptotic stimuli: an hypothesis,” Free Radical Research, vol. 30, no. 4, pp. 247–252, 1999. View at Publisher · View at Google Scholar · View at Scopus
  44. A. S. Lundberg, W. C. Hahn, P. Gupta, and R. A. Weinberg, “Genes involved in senescence and immortalization,” Current Opinion in Cell Biology, vol. 12, no. 6, pp. 705–709, 2000. View at Publisher · View at Google Scholar · View at Scopus
  45. R. H. Burdon, “Control of ceil proliferation by reactive oxygen species,” Biochemical Society Transactions, vol. 24, no. 4, pp. 1028–1032, 1996. View at Google Scholar · View at Scopus
  46. R. H. Burdon, “Superoxide and hydrogen peroxide in relation to mammalian cell proliferation,” Free Radical Biology and Medicine, vol. 18, no. 4, pp. 775–794, 1995. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Sawada and J. C. Carlson, “Changes in superoxide radical and lipid peroxide formation in the brain, heart and liver during the lifetime of the rat,” Mechanisms of Ageing and Development, vol. 41, no. 1-2, pp. 125–137, 1987. View at Google Scholar · View at Scopus
  48. R. S. Sohal and B. H. Sohal, “Hydrogen peroxide release by mitochondria increases during aging,” Mechanisms of Ageing and Development, vol. 57, no. 2, pp. 187–202, 1991. View at Publisher · View at Google Scholar · View at Scopus
  49. R. S. Sohal and A. Dubey, “Mitochondrial oxidative damage, hydrogen peroxide release, and aging,” Free Radical Biology and Medicine, vol. 16, no. 5, pp. 621–626, 1994. View at Publisher · View at Google Scholar · View at Scopus
  50. F. Capel, V. Rimbert, D. Lioger et al., “Due to reverse electron transfer, mitochondrial H2O2 release increases with age in human vastus lateralis muscle although oxidative capacity is preserved,” Mechanisms of Ageing and Development, vol. 126, no. 4, pp. 505–511, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. C. G. Fraga, M. K. Shigenaga, J. W. Park, P. Degan, and B. N. Ames, “Oxidative damage to DNA during aging: 8-Hydroxy-2'-deoxyguanosine in rat organ DNA and urine,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 12, pp. 4533–4537, 1990. View at Publisher · View at Google Scholar · View at Scopus
  52. M. L. Hamilton, H. Van Remmen, J. A. Drake et al., “Does oxidative damage to DNA increase with age?” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 18, pp. 10469–10474, 2001. View at Publisher · View at Google Scholar · View at Scopus
  53. C. N. Oliver, B. W. Ahn, and E. J. Moerman, “Age-related changes in oxidized proteins,” Journal of Biological Chemistry, vol. 262, no. 12, pp. 5488–5491, 1987. View at Google Scholar · View at Scopus
  54. P. L. Larsen, “Aging and resistance to oxidative damage in Caenorhabditis elegans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 19, pp. 8905–8909, 1993. View at Publisher · View at Google Scholar · View at Scopus
  55. N. Ishii, “Oxidative stress and aging in Caenorhabditis elegans,” Free Radical Research, vol. 33, no. 6, pp. 857–864, 2000. View at Google Scholar · View at Scopus
  56. S. Elchuri, T. D. Oberley, W. Qi et al., “CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life,” Oncogene, vol. 24, no. 3, pp. 367–380, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. W. C. Orr and R. S. Sohal, “Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster,” Science, vol. 263, no. 5150, pp. 1128–1130, 1994. View at Google Scholar · View at Scopus
  58. S. Melov, J. Ravenscroft, S. Malik et al., “Extension of life-span with superoxide dismutase/catalase mimetics,” Science, vol. 289, no. 5484, pp. 1567–1569, 2000. View at Publisher · View at Google Scholar · View at Scopus
  59. L. Erker, R. Schubert, H. Yakushiji et al., “Cancer chemoprevention by the antioxidant tempol acts partially via the p53 tumor suppressor,” Human Molecular Genetics, vol. 14, no. 12, pp. 1699–1708, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. S. E. Schriner, N. J. Linford, G. M. Martin et al., “Medecine: extension of murine life span by overexpression of catalase targeted to mitochondria,” Science, vol. 308, no. 5730, pp. 1909–1911, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. Y. Xie, H. Yang, C. Cunanan et al., “Deficiencies in mouse Myh and Ogg1 result in tumor predisposition and G to T mutations in codon 12 of the K-ras oncogene in lung tumors,” Cancer Research, vol. 64, no. 9, pp. 3096–3102, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. J. Lapointe and S. Hekimi, “When a theory of aging ages badly,” Cellular and Molecular Life Sciences, vol. 67, no. 1, pp. 1–8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. H. Van Remmen, Y. Ikeno, M. Hamilton et al., “Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging,” Physiological Genomics, vol. 16, pp. 29–37, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. T. T. Huang, E. J. Carlson, A. M. Gillespie, Y. Shi, and C. J. Epstein, “Ubiquitous overexpression of CuZn superoxide dismutase does not extend life span in mice,” Journals of Gerontology A, vol. 55, no. 1, pp. B5–B9, 2000. View at Google Scholar · View at Scopus
  65. X. Chen, H. Liang, H. Van Remmen, J. Vijg, and A. Richardson, “Catalase transgenic mice: characterization and sensitivity to oxidative stress,” Archives of Biochemistry and Biophysics, vol. 422, no. 2, pp. 197–210, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. Q. Ran, H. Liang, Y. Ikeno et al., “Reduction in glutathione peroxidase 4 increases life span through increased sensitivity to apoptosis,” Journals of Gerontology A, vol. 62, no. 9, pp. 932–942, 2007. View at Google Scholar · View at Scopus
  67. B. Andziak, T. P. O'Connor, W. Qi et al., “High oxidative damage levels in the longest-living rodent, the naked mole-rat,” Aging Cell, vol. 5, no. 6, pp. 463–471, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. R. S. Sohal, S. Kamzalov, N. Sumien et al., “Effect of coenzyme Q10 intake on endogenous coenzyme Q content, mitochondrial electron transport chain, antioxidative defenses, and life span of mice,” Free Radical Biology and Medicine, vol. 40, no. 3, pp. 480–487, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. R. M. Howes, “The free radical fantasy: a panoply of paradoxes,” Annals of the New York Academy of Sciences, vol. 1067, no. 1, pp. 22–26, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. G. Bjelakovic, D. Nikolova, L. L. Gluud, R. G. Simonetti, and C. Gluud, “Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis,” Journal of the American Medical Association, vol. 297, no. 8, pp. 842–857, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. L. Hayflick and P. S. Moorhead, “The serial cultivation of human diploid cell strains,” Experimental Cell Research, vol. 25, no. 3, pp. 585–621, 1961. View at Google Scholar · View at Scopus
  72. L. Hayflick, “The cell biology of human aging,” New England Journal of Medicine, vol. 295, no. 23, pp. 1302–1308, 1976. View at Google Scholar · View at Scopus
  73. J. Campisi, “Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors,” Cell, vol. 120, no. 4, pp. 513–522, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. N. E. Sharpless and R. A. DePinho, “Telomeres, stem cells, senescence, and cancer,” Journal of Clinical Investigation, vol. 113, no. 2, pp. 160–168, 2004. View at Publisher · View at Google Scholar · View at Scopus
  75. J. F. Passos, G. Saretzki, S. Ahmed et al., “Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence,” PLoS Biology, vol. 5, no. 5, article e110, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. Q. Chen, A. Fischer, J. D. Reagan, L. J. Yan, and B. N. Ames, “Oxidative DNA damage and senescence of human diploid fibroblast cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 10, pp. 4337–4341, 1995. View at Google Scholar · View at Scopus
  77. N. Sitte, K. Merker, T. Von Zglinicki, and T. Grune, “Protein oxidation and degradation during proliferative senescence of human MRC-5 fibroblasts,” Free Radical Biology and Medicine, vol. 28, no. 5, pp. 701–708, 2000. View at Publisher · View at Google Scholar · View at Scopus
  78. K. Itahana, Y. Zou, Y. Itahana et al., “Control of the replicative life span of human fibroblasts by p16 and the polycomb protein Bmi-1,” Molecular and Cellular Biology, vol. 23, no. 1, pp. 389–401, 2003. View at Publisher · View at Google Scholar · View at Scopus
  79. V. Serra, T. Von Zglinicki, M. Lorenz, and G. Saretzki, “Extracellular superoxide dismutase is a major antioxidant in human fibroblasts and slows telomere shortening,” Journal of Biological Chemistry, vol. 278, no. 9, pp. 6824–6830, 2003. View at Publisher · View at Google Scholar · View at Scopus
  80. T. Lu and T. Finkel, “Free radicals and senescence,” Experimental Cell Research, vol. 314, no. 9, pp. 1918–1922, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. T. L. Parkes, A. J. Elia, D. Dickinson, A. J. Hilliker, J. P. Phillips, and G. L. Boulianne, “Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons,” Nature Genetics, vol. 19, no. 2, pp. 171–174, 1998. View at Publisher · View at Google Scholar · View at Scopus
  82. W. E. Wright and J. W. Shay, “Cellular senescence as a tumor-protection mechanism: the essential role of counting,” Current Opinion in Genetics and Development, vol. 11, no. 1, pp. 98–103, 2001. View at Publisher · View at Google Scholar · View at Scopus
  83. A. G. Bodnar, M. Ouellette, M. Frolkis et al., “Extension of life-span by introduction of telomerase into normal human cells,” Science, vol. 279, no. 5349, pp. 349–352, 1998. View at Publisher · View at Google Scholar · View at Scopus
  84. T. Richter and T. Von Zglinicki, “A continuous correlation between oxidative stress and telomere shortening in fibroblasts,” Experimental Gerontology, vol. 42, no. 11, pp. 1039–1042, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. V. A. Szalai, M. J. Singer, and H. H. Thorp, “Site-specific probing of oxidative reactivity and telomerase function using 7,8-dihydro-8-oxoguanine in telomeric DNA,” Journal of the American Chemical Society, vol. 124, no. 8, pp. 1625–1631, 2002. View at Publisher · View at Google Scholar · View at Scopus
  86. J. Haendeler, J. Hoffmann, J. F. Diehl et al., “Antioxidants inhibit nuclear export of telomerase reverse transcriptase and delay replicative senescence of endothelial cells,” Circulation Research, vol. 94, no. 6, pp. 768–775, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. P. L. Opresko, J. Fan, S. Danzy, D. M. Wilson III, and V. A. Bohr, “Oxidative damage in telomeric DNA disrupts recognition by TRF1 and TRF2,” Nucleic Acids Research, vol. 33, no. 4, pp. 1230–1239, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. W. Palm and T. De Lange, “How shelterin protects mammalian telomeres,” Annual Review of Genetics, vol. 42, pp. 301–334, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. G. Achanta and P. Huang, “Role of p53 in sensing oxidative DNA damage in response to reactive oxygen species-generating agents,” Cancer Research, vol. 64, no. 17, pp. 6233–6239, 2004. View at Publisher · View at Google Scholar · View at Scopus
  90. K. Fujita, I. Horikawa, A. M. Mondal et al., “Positive feedback between p53 and TRF2 during telomere-damage signalling and cellular senescence,” Nature Cell Biology, vol. 12, no. 12, pp. 1205–1212, 2010. View at Publisher · View at Google Scholar · View at Scopus
  91. D. J. Rossi, C. H. M. Jamieson, and I. L. Weissman, “Stems cells and the pathways to aging and cancer,” Cell, vol. 132, no. 4, pp. 681–696, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. J. Chen, C. M. Astle, and D. E. Harrison, “Development and aging of primitive hematopoietic stem cells in BALB/cBy mice,” Experimental Hematology, vol. 27, no. 5, pp. 928–935, 1999. View at Publisher · View at Google Scholar · View at Scopus
  93. J. Chen, C. M. Astle, and D. E. Harrison, “Genetic regulation of primitive hematopoietic stem cell senescence,” Experimental Hematology, vol. 28, no. 4, pp. 442–450, 2000. View at Publisher · View at Google Scholar · View at Scopus
  94. D. J. Rossi, D. Bryder, J. M. Zahn et al., “Cell intrinsic alterations underlie hematopoietic stem cell aging,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 26, pp. 9194–9199, 2005. View at Publisher · View at Google Scholar · View at Scopus
  95. K. Ito, A. Hirao, F. Arai et al., “Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells,” Nature, vol. 431, no. 7011, pp. 997–1002, 2004. View at Publisher · View at Google Scholar · View at Scopus
  96. Z. Tothova, R. Kollipara, B. J. Huntly et al., “FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress,” Cell, vol. 128, no. 2, pp. 325–339, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. S. Yalcin, X. Zhang, J. P. Luciano et al., “Foxo3 is essential for the regulation of ataxia telangiectasia mutated and oxidative stress-mediated homeostasis of hematopoietic stem cells,” Journal of Biological Chemistry, vol. 283, no. 37, pp. 25692–25705, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. K. Miyamoto, K. Y. Araki, K. Naka et al., “Foxo3a is essential for maintenance of the hematopoietic stem cell pool,” Cell Stem Cell, vol. 1, no. 1, pp. 101–112, 2007. View at Publisher · View at Google Scholar · View at Scopus
  99. E. Nitta, M. Yamashita, K. Hosokawa et al., “Telomerase reverse transcriptase protects ATM-deficient hematopoietic stem cells from ROS-induced apoptosis through a telomere-independent mechanism,” Blood, vol. 117, no. 16, pp. 4169–4180, 2011. View at Publisher · View at Google Scholar
  100. S. Yalcin, D. Marinkovic, S. K. Mungamuri et al., “ROS-mediated amplification of AKT/mTOR signalling pathway leads to myeloproliferative syndrome in Foxo3-/- mice,” EMBO Journal, vol. 29, no. 24, pp. 4118–4131, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. S. K. George, Y. Jiao, C. E. Bishop, and B. Lu, “Mitochondrial peptidase IMMP2L mutation causes early onset of age-associated disorders and impairs adult stem cell self-renewal,” Aging Cell, vol. 10, no. 4, pp. 584–594, 2011. View at Publisher · View at Google Scholar
  102. Y. Y. Jang and S. J. Sharkis, “A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche,” Blood, vol. 110, no. 8, pp. 3056–3063, 2007. View at Publisher · View at Google Scholar · View at Scopus
  103. D. J. Rossi, D. Bryder, J. Seita, A. Nussenzweig, J. Hoeijmakers, and I. L. Weissman, “Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age,” Nature, vol. 447, no. 7145, pp. 725–729, 2007. View at Publisher · View at Google Scholar · View at Scopus
  104. D. Harman, “The biologic clock: the mitochondria?” Journal of the American Geriatrics Society, vol. 20, no. 4, pp. 145–147, 1972. View at Google Scholar · View at Scopus
  105. C. Richter, “Reactive oxygen and DNA damage in mitochondria,” Mutation Research, vol. 275, no. 3–6, pp. 249–255, 1992. View at Publisher · View at Google Scholar · View at Scopus
  106. M. K. Shigenaga, T. M. Hagen, and B. N. Ames, “Oxidative damage and mitochondrial decay in aging,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 23, pp. 10771–10778, 1994. View at Publisher · View at Google Scholar · View at Scopus
  107. S. Agarwal and R. S. Sohal, “DNA oxidative damage and life expectancy in houseflies,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 25, pp. 12332–12335, 1994. View at Publisher · View at Google Scholar · View at Scopus
  108. C. Richter, J. W. Park, and B. N. Ames, “Normal oxidative damage to mitochondrial and nuclear DNA is extensive,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 17, pp. 6465–6467, 1988. View at Google Scholar · View at Scopus
  109. P. Mecocci, U. MacGarvey, A. E. Kaufman et al., “Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain,” Annals of Neurology, vol. 34, no. 4, pp. 609–616, 1993. View at Google Scholar · View at Scopus
  110. M. Hayakawa, T. Ogawa, S. Sugiyama, M. Tanaka, and T. Ozawa, “Massive conversion of guanosine to 8-hydroxy-guanosine in mouse liver mitochondrial DNA by administration of azidothymidine,” Biochemical and Biophysical Research Communications, vol. 176, no. 1, pp. 87–93, 1991. View at Google Scholar
  111. B. N. Ames, M. K. Shigenaga, and T. M. Hagen, “Oxidants, antioxidants, and the degenerative diseases of aging,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 17, pp. 7915–7922, 1993. View at Google Scholar · View at Scopus
  112. J. G. De La Asuncion, A. Millan, R. Pla et al., “Mitochondrial glutathione oxidation correlates with age-associated oxidative damage to mitochondrial DNA,” FASEB Journal, vol. 10, no. 2, pp. 333–338, 1996. View at Google Scholar · View at Scopus
  113. J. H. Santos, B. S. Mandavilli, and B. Van Houten, “Measuring oxidative mtDNA damage and repair using quantitative PCR,” Methods in Molecular Biology, vol. 197, pp. 159–176, 2002. View at Google Scholar · View at Scopus
  114. J. Miquel, A. C. Economos, J. Fleming, and J. E. Johnson Jr., “Mitochondrial role in cell aging,” Experimental Gerontology, vol. 15, no. 6, pp. 575–591, 1980. View at Publisher · View at Google Scholar · View at Scopus
  115. M. Falkenberg, N. G. Larsson, and C. M. Gustafsson, “DNA replication and transcription in mammalian mitochondria,” Annual Review of Biochemistry, vol. 76, pp. 679–699, 2007. View at Publisher · View at Google Scholar · View at Scopus
  116. J. E. Fleming, J. Miquel, and S. F. Cottrell, “Is cell aging caused by respiration-dependent injury to the mitochondrial genome?” Gerontology, vol. 28, no. 1, pp. 44–53, 1982. View at Google Scholar
  117. A. Chomyn and G. Attardi, “MtDNA mutations in aging and apoptosis,” Biochemical and Biophysical Research Communications, vol. 304, no. 3, pp. 519–529, 2003. View at Publisher · View at Google Scholar
  118. A. Hiona and C. Leeuwenburgh, “The role of mitochondrial DNA mutations in aging and sarcopenia: implications for the mitochondrial vicious cycle theory of aging,” Experimental Gerontology, vol. 43, no. 1, pp. 24–33, 2008. View at Publisher · View at Google Scholar · View at Scopus
  119. R. Yamaguchi and G. Perkins, “Dynamics of mitochondrial structure during apoptosis and the enigma of Opa1,” Biochimica et Biophysica Acta, vol. 1787, no. 8, pp. 963–972, 2009. View at Publisher · View at Google Scholar
  120. M. Mather and H. Rottenberg, “Aging enhances the activation of the permeability transition pore in mitochondria,” Biochemical and Biophysical Research Communications, vol. 273, no. 2, pp. 603–608, 2000. View at Publisher · View at Google Scholar
  121. H. Rottenberg and S. Wu, “Mitochondrial dysfunction in lymphocytes from old mice: enhanced activation of the permeability transition,” Biochemical and Biophysical Research Communications, vol. 240, no. 1, pp. 68–74, 1997. View at Publisher · View at Google Scholar
  122. L. J. Yan and R. S. Sohal, “Mitochondrial adenine nucleotide translocase is modified oxidatively during aging,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 22, pp. 12896–12901, 1998. View at Publisher · View at Google Scholar · View at Scopus
  123. Y. Zhang and B. Herman, “Ageing and apoptosis,” Mechanisms of Ageing and Development, vol. 123, no. 4, pp. 245–260, 2002. View at Publisher · View at Google Scholar · View at Scopus
  124. A. Trifunovic, A. Wredenberg, M. Falkenberg et al., “Premature ageing in mice expressing defective mitochondrial DNA polymerase,” Nature, vol. 429, no. 6990, pp. 417–423, 2004. View at Publisher · View at Google Scholar
  125. C. C. Kujoth, A. Hiona, T. D. Pugh et al., “Medicine: mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging,” Science, vol. 309, no. 5733, pp. 481–484, 2005. View at Publisher · View at Google Scholar · View at Scopus
  126. J. L. Mott, D. Zhang, M. Stevens, S. W. Chang, G. Denniger, and H. P. Zassenhaus, “Oxidative stress is not an obligate mediator of disease provoked by mitochondrial DNA mutations,” Mutation Research, vol. 474, no. 1-2, pp. 35–45, 2001. View at Publisher · View at Google Scholar · View at Scopus
  127. H. Kasamatsu, D. L. Robberson, and J. Vinograd, “A novel closed-circular mitochondrial DNA with properties of a replicating intermediate,” Proceedings of the National Academy of Sciences of the United States of America, vol. 68, no. 9, pp. 2252–2257, 1971. View at Google Scholar · View at Scopus
  128. C. D. Calloway, R. L. Reynolds, G. L. Herrin, and W. W. Anderson, “The frequency of heteroplasmy in the HVII region of mtDNA differs across tissue types and increases with age,” American Journal of Human Genetics, vol. 66, no. 4, pp. 1384–1397, 2000. View at Publisher · View at Google Scholar · View at Scopus
  129. R. Del Bo, A. Bordoni, F. M. Boneschi et al., “Evidence and age-related distribution of mtDNA D-loop point mutations in skeletal muscle from healthy subjects and mitochondrial patients,” Journal of the Neurological Sciences, vol. 202, no. 1-2, pp. 85–91, 2002. View at Publisher · View at Google Scholar · View at Scopus
  130. Y. Michikawa, F. Mazzucchelli, N. Bresolin, G. Scarlato, and G. Attardi, “Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication,” Science, vol. 286, no. 5440, pp. 774–779, 1999. View at Publisher · View at Google Scholar · View at Scopus
  131. C. Thèves, C. Keyser-Tracqui, E. Crubézy, J.-P. Salles, B. Ludes, and N. Telmon, “Detection and quantification of the age-related point mutation A189G in the human mitochondrial DNA,” Journal of Forensic Sciences, vol. 51, no. 4, pp. 865–873, 2006. View at Publisher · View at Google Scholar
  132. Y. Wang, Y. Michikawa, C. Mallidis et al., “Muscle-specific mutations accumulate with aging in critical human mtDNA control sites for replication,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 7, pp. 4022–4027, 2001. View at Publisher · View at Google Scholar · View at Scopus
  133. L. Piko, A. J. Hougham, and K. J. Bulpitt, “Studies of sequence heterogeneity of mitochondrial DNA from rat and mouse tissues: evidence for an increased frequency of deletions/additions with aging,” Mechanisms of Ageing and Development, vol. 43, no. 3, pp. 279–293, 1988. View at Google Scholar · View at Scopus
  134. G. A. Cortopassi and N. Arnheim, “Detection of a specific mitochondrial DNA deletion in tissues of older humans,” Nucleic Acids Research, vol. 18, no. 23, pp. 6927–6933, 1990. View at Google Scholar · View at Scopus
  135. W. Sato, M. Tanaka, K. Ohno, T. Yamamoto, G. Takada, and T. Ozawa, “Multiple populations of deleted mitochondrial DNA detected by a novel gene amplification method,” Biochemical and Biophysical Research Communications, vol. 162, no. 2, pp. 664–672, 1989. View at Google Scholar
  136. N. W. Soong, D. R. Hinton, G. Cortopassi, and N. Arnheim, “Mosaicism for a specific somatic mitochondrial DNA mutation in adult human brain,” Nature Genetics, vol. 2, no. 4, pp. 318–323, 1992. View at Google Scholar · View at Scopus
  137. M. Corral-Debrinski, T. Horton, M. T. Lott, J. M. Shoffner, M. F. Beal, and D. C. Wallace, “Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age,” Nature Genetics, vol. 2, no. 4, pp. 324–329, 1992. View at Google Scholar · View at Scopus
  138. S. S. Chung, R. Weindruch, S. R. Schwarze, D. I. McKenzie, and J. M. Aiken, “Multiple age-associated mitochondrial DNA deletions in skeletal muscle of mice,” Aging, vol. 6, no. 3, pp. 193–200, 1994. View at Google Scholar · View at Scopus
  139. C. M. Lee, S. S. Chung, J. M. Kaczkowski, R. Weindruch, and J. M. Aiken, “Multiple mitochondrial DNA deletions associated with age in skeletal muscle of rhesus monkeys,” Journals of Gerontology, vol. 48, no. 6, pp. B201–B205, 1993. View at Google Scholar · View at Scopus
  140. C. M. Lee, M. E. Lopez, R. Weindruch, and J. M. Aiken, “Association of age-related mitochondrial abnormalities with skeletal muscle fiber atrophy,” Free Radical Biology and Medicine, vol. 25, no. 8, pp. 964–972, 1998. View at Publisher · View at Google Scholar · View at Scopus
  141. S. Melov, G. J. Lithgow, D. R. Fischer, P. M. Tedesco, and T. E. Johnson, “Increased frequency of deletions in the mitochondrial genome with age of Caenorhabditis elegans,” Nucleic Acids Research, vol. 23, no. 8, pp. 1419–1425, 1995. View at Google Scholar · View at Scopus
  142. S. Melova, J. A. Schneider, P. E. Coskun, D. A. Bennett, and D. C. Wallace, “Mitochondrial DNA rearrangements in aging human brain and in situ PCR of mtDNA,” Neurobiology of Aging, vol. 20, no. 5, pp. 565–571, 1999. View at Publisher · View at Google Scholar
  143. S. Melov, J. M. Shoffner, A. Kaufman, and D. C. Wallace, “Marked increase in the number and variety of mitochondrial DNA rearrangements in aging human skeletal muscle,” Nucleic Acids Research, vol. 23, no. 20, pp. 4122–4126, 1995. View at Google Scholar
  144. S. R. Schwarze, C. M. Lee, S. S. Chung, E. B. Roecker, R. Weindruch, and J. M. Aiken, “High levels of mitochondrial DNA deletions in skeletal muscle of old rhesus monkeys,” Mechanisms of Ageing and Development, vol. 83, no. 2, pp. 91–101, 1995. View at Publisher · View at Google Scholar · View at Scopus
  145. C. Zhang, A. Baumer, R. J. Maxwell, A. W. Linnane, and P. Nagley, “Multiple mitochondrial DNA deletions in an elderly human individual,” FEBS Letters, vol. 297, no. 1-2, pp. 34–38, 1992. View at Publisher · View at Google Scholar · View at Scopus
  146. D. L. Robberson and D. A. Clayton, “Replication of mitochondrial DNA in mouse L cells and their thymidine kinase—derivatives: displacement replication on a covalently-closed circular template,” Proceedings of the National Academy of Sciences of the United States of America, vol. 69, no. 12, pp. 3810–3814, 1972. View at Google Scholar · View at Scopus
  147. T. Yasukawa, A. Reyes, T. J. Cluett et al., “Replication of vertebrate mitochondrial DNA entails transient ribonucleotide incorporation throughout the lagging strand,” EMBO Journal, vol. 25, no. 22, pp. 5358–5371, 2006. View at Publisher · View at Google Scholar · View at Scopus
  148. I. J. Holt, H. E. Lorimer, and H. T. Jacobs, “Coupled leading- and lagging-strand synthesis of mammalian mitochondrial DNA,” Cell, vol. 100, no. 5, pp. 515–524, 2000. View at Google Scholar · View at Scopus
  149. K. J. Krishnan, A. K. Reeve, D. C. Samuels et al., “What causes mitochondrial DNA deletions in human cells?” Nature Genetics, vol. 40, no. 3, pp. 275–279, 2008. View at Publisher · View at Google Scholar · View at Scopus
  150. J. E. Haber, “Partners and pathways—repairing a double-strand break,” Trends in Genetics, vol. 16, no. 6, pp. 259–264, 2000. View at Publisher · View at Google Scholar · View at Scopus
  151. A. W. Linnane, C. Zhang, A. Baumer, and P. Nagley, “Mitochondrial DNA mutation and the ageing process: bioenergy and pharmacological intervention,” Mutation Research, vol. 275, no. 3–6, pp. 195–208, 1992. View at Publisher · View at Google Scholar · View at Scopus
  152. N. Arnheim and G. Cortopassi, “Deleterious mitochondrial DNA mutations accumulate in aging human tissues,” Mutation Research, vol. 275, no. 3–6, pp. 157–167, 1992. View at Publisher · View at Google Scholar · View at Scopus
  153. M. Hayakawa, K. Hattori, S. Sugiyama, and T. Ozawa, “Age-associated oxygen damage and mutations in mitochondrial DNA in human hearts,” Biochemical and Biophysical Research Communications, vol. 189, no. 2, pp. 979–985, 1992. View at Publisher · View at Google Scholar
  154. C. Meissner, P. Bruse, S. A. Mohamed et al., “The 4977 bp deletion of mitochondrial DNA in human skeletal muscle, heart and different areas of the brain: a useful biomarker or more?” Experimental Gerontology, vol. 43, no. 7, pp. 645–652, 2008. View at Publisher · View at Google Scholar · View at Scopus
  155. T.-C. Yen, J.-H. Su, K.-L. King, and Y.-H. Wei, “Ageing-associated 5 kb deletion in human liver mitochondrial DNA,” Biochemical and Biophysical Research Communications, vol. 178, no. 1, pp. 124–131, 1991. View at Publisher · View at Google Scholar
  156. R. Barazzoni, K. R. Short, and K. S. Nair, “Effects of aging on mitochondrial DNA copy number and cytochrome c oxidase gene expression in rat skeletal muscle, liver, and heart,” Journal of Biological Chemistry, vol. 275, no. 5, pp. 3343–3347, 2000. View at Publisher · View at Google Scholar · View at Scopus
  157. S. Welle, K. Bhatt, B. Shah, N. Needler, J. M. Delehanty, and C. A. Thornton, “Reduced amount of mitochondrial DNA in aged human muscle,” Journal of Applied Physiology, vol. 94, no. 4, pp. 1479–1484, 2003. View at Google Scholar · View at Scopus
  158. K. R. Short, M. L. Bigelow, J. Kahl et al., “Decline in skeletal muscle mitochondrial function with aging in humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 15, pp. 5618–5623, 2005. View at Publisher · View at Google Scholar · View at Scopus
  159. F. J. Miller, F. L. Rosenfeldt, C. Zhang, A. W. Linnane, and P. Nagley, “Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCR-based assay: lack of change of copy number with age,” Nucleic Acids Research, vol. 31, no. 11, article e61, 2003. View at Google Scholar · View at Scopus
  160. T. Frahm, S. A. Mohamed, P. Bruse, C. Gemünd, M. Oehmichen, and C. Meissner, “Lack of age-related increase of mitochondrial DNA amount in brain, skeletal muscle and human heart,” Mechanisms of Ageing and Development, vol. 126, no. 11, pp. 1192–1200, 2005. View at Publisher · View at Google Scholar · View at Scopus
  161. M. Masuyama, R. Iida, H. Takatsuka, T. Yasuda, and T. Matsuki, “Quantitative change in mitochondrial DNA content in various mouse tissues during aging,” Biochimica et Biophysica Acta, vol. 1723, no. 1–3, pp. 302–308, 2005. View at Publisher · View at Google Scholar
  162. I. R. Lanza, D. K. Short, K. R. Short et al., “Endurance exercise as a countermeasure for aging,” Diabetes, vol. 57, no. 11, pp. 2933–2942, 2008. View at Publisher · View at Google Scholar · View at Scopus
  163. F. W. Booth and D. B. Thomason, “Molecular and cellular adaptation of muscle in response to exercise: perspectives of various models,” Physiological Reviews, vol. 71, no. 2, pp. 541–585, 1991. View at Google Scholar · View at Scopus
  164. L. S. Chow, L. J. Greenlund, Y. W. Asmann et al., “Impact of endurance training on murine spontaneous activity, muscle mitochondrial DNA abundance, gene transcripts, and function,” Journal of Applied Physiology, vol. 102, no. 3, pp. 1078–1089, 2007. View at Publisher · View at Google Scholar · View at Scopus
  165. S. DiMauro and A. L. Andreu, “Mutations in mtDNA: are we scraping the bottom of the barrel?” Brain Pathology, vol. 10, no. 3, pp. 431–441, 2000. View at Google Scholar · View at Scopus
  166. D. C. Wallace, “Mouse models for mitochondrial disease,” American Journal of Medical Genetics, vol. 106, no. 1, pp. 71–93, 2001. View at Publisher · View at Google Scholar · View at Scopus
  167. G. L. Wenk, “Neuropathologic changes in Alzheimer's disease,” Journal of Clinical Psychiatry, vol. 64, supplement 9, pp. 7–10, 2003. View at Google Scholar · View at Scopus
  168. J. P. Blass and G. E. Gibson, “The role of oxidative abnormalities in the pathophysiology of Alzheimer's disease,” Revue Neurologique, vol. 147, no. 6-7, pp. 513–525, 1991. View at Google Scholar
  169. J. P. Blass, A. C. Baker, L. W. Ko, and R. S. Black, “Induction of Alzheimer antigens by an uncoupler of oxidative phosphorylation,” Archives of Neurology, vol. 47, no. 8, pp. 864–869, 1990. View at Google Scholar · View at Scopus
  170. K. Hirai, G. Aliev, A. Nunomura et al., “Mitochondrial abnormalities in Alzheimer's disease,” Journal of Neuroscience, vol. 21, no. 9, pp. 3017–3023, 2001. View at Google Scholar · View at Scopus
  171. S. M. Cardoso, M. T. Proença, S. Santos, I. Santana, and C. R. Oliveira, “Cytochrome c oxidase is decreased in Alzheimer's disease platelets,” Neurobiology of Aging, vol. 25, no. 1, pp. 105–110, 2004. View at Publisher · View at Google Scholar
  172. S. J. Kish, C. Bergeron, A. Rajput et al., “Brain cytochrome oxidase in Alzheimer's disease,” Journal of Neurochemistry, vol. 59, no. 2, pp. 776–779, 1992. View at Publisher · View at Google Scholar · View at Scopus
  173. E. M. Mutisya, A. C. Bowling, and M. F. Beal, “Cortical cytochrome oxidase activity is reduced in Alzheimer's disease,” Journal of Neurochemistry, vol. 63, no. 6, pp. 2179–2184, 1994. View at Google Scholar · View at Scopus
  174. A. Wood-Kaczmar, S. Gandhi, and N. W. Wood, “Understanding the molecular causes of Parkinson's disease,” Trends in Molecular Medicine, vol. 12, no. 11, pp. 521–528, 2006. View at Publisher · View at Google Scholar · View at Scopus
  175. J. T. Greenamyre and T. G. Hastings, “Parkinsons-divergent causes convergent mechanisms,” Science, vol. 304, no. 5674, pp. 1120–1122, 2004. View at Publisher · View at Google Scholar · View at Scopus
  176. V. M. Mann, J. M. Cooper, S. E. Daniel et al., “Complex I, iron, and ferritin in Parkinson's disease substantia nigra,” Annals of Neurology, vol. 36, no. 6, pp. 876–881, 1994. View at Publisher · View at Google Scholar · View at Scopus
  177. J. W. Langston, L. S. Forno, J. Tetrud, A. G. Reeves, J. A. Kaplan, and D. Karluk, “Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure,” Annals of Neurology, vol. 46, no. 4, pp. 598–605, 1999. View at Publisher · View at Google Scholar · View at Scopus
  178. W. Dauer and S. Przedborski, “Parkinson's disease: mechanisms and models,” Neuron, vol. 39, no. 6, pp. 889–909, 2003. View at Publisher · View at Google Scholar · View at Scopus
  179. H. Chen and D. C. Chan, “Mitochondrial dynamics—fusion, fission, movement, and mitophagy—in neurodegenerative diseases,” Human Molecular Genetics, vol. 18, no. 2, pp. R169–176, 2009. View at Google Scholar
  180. M. W. Dodson and M. Guo, “Pink1, Parkin, DJ-1 and mitochondrial dysfunction in Parkinson's disease,” Current Opinion in Neurobiology, vol. 17, no. 3, pp. 331–337, 2007. View at Publisher · View at Google Scholar · View at Scopus
  181. E. Rogaeva, J. Johnson, A. E. Lang et al., “Analysis of the PINK1 gene in a large cohort of cases with Parkinson disease,” Archives of Neurology, vol. 61, no. 12, pp. 1898–1904, 2004. View at Publisher · View at Google Scholar · View at Scopus
  182. E. M. Valente, P. M. Abou-Sleiman, V. Caputo et al., “Hereditary early-onset Parkinson's disease caused by mutations in PINK1,” Science, vol. 304, no. 5674, pp. 1158–1160, 2004. View at Publisher · View at Google Scholar · View at Scopus
  183. T. Kitada, S. Asakawa, N. Hattori et al., “Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism,” Nature, vol. 392, no. 6676, pp. 605–608, 1998. View at Publisher · View at Google Scholar · View at Scopus
  184. Y. Yang, S. Gehrke, Y. Imai et al., “Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 28, pp. 10793–10798, 2006. View at Publisher · View at Google Scholar · View at Scopus
  185. J. Park, S. B. Lee, S. Lee et al., “Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin,” Nature, vol. 441, no. 7097, pp. 1157–1161, 2006. View at Publisher · View at Google Scholar · View at Scopus
  186. I. E. Clark, M. W. Dodson, C. Jiang et al., “Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin,” Nature, vol. 441, no. 7097, pp. 1162–1166, 2006. View at Publisher · View at Google Scholar · View at Scopus
  187. N. Exner, B. Treske, D. Paquet et al., “Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin,” Journal of Neuroscience, vol. 27, no. 45, pp. 12413–12418, 2007. View at Publisher · View at Google Scholar
  188. M. E. MacDonald, C. M. Ambrose, M. P. Duyao et al., “A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes,” Cell, vol. 72, no. 6, pp. 971–983, 1993. View at Publisher · View at Google Scholar
  189. E. Bossy-Wetzel, A. Petrilli, and A. B. Knott, “Mutant huntingtin and mitochondrial dysfunction,” Trends in Neurosciences, vol. 31, no. 12, pp. 609–616, 2008. View at Publisher · View at Google Scholar · View at Scopus
  190. A. L. Orr, S. Li, C. E. Wang et al., “N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking,” Journal of Neuroscience, vol. 28, no. 11, pp. 2783–2792, 2008. View at Publisher · View at Google Scholar · View at Scopus
  191. A. V. Panov, C. A. Gutekunst, B. R. Leavitt et al., “Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines,” Nature Neuroscience, vol. 5, no. 8, pp. 731–736, 2002. View at Publisher · View at Google Scholar · View at Scopus
  192. F. Squitieri, M. Cannella, G. Sgarbi et al., “Severe ultrastructural mitochondrial changes in lymphoblasts homozygous for Huntington disease mutation,” Mechanisms of Ageing and Development, vol. 127, no. 2, pp. 217–220, 2006. View at Publisher · View at Google Scholar · View at Scopus
  193. M. T. Lin and M. F. Beal, “Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases,” Nature, vol. 443, no. 7113, pp. 787–795, 2006. View at Publisher · View at Google Scholar · View at Scopus
  194. E. H. Kim, S. Sohn, H. J. Kwon et al., “Sodium selenite induces superoxide-mediated mitochondrial damage and subsequent autophagic cell death in malignant glioma cells,” Cancer Research, vol. 67, no. 13, pp. 6314–6324, 2007. View at Publisher · View at Google Scholar · View at Scopus
  195. R. A. Kirkland, R. M. Adibhatla, J. F. Hatcher, and J. L. Franklin, “Loss of cardiolipin and mitochondria during programmed neuronal death: evidence of a role for lipid peroxidation and autophagy,” Neuroscience, vol. 115, no. 2, pp. 587–602, 2002. View at Publisher · View at Google Scholar · View at Scopus
  196. I. Kiššová, M. Deffieu, V. Samokhvalov et al., “Lipid oxidation and autophagy in yeast,” Free Radical Biology and Medicine, vol. 41, no. 11, pp. 1655–1661, 2006. View at Publisher · View at Google Scholar · View at Scopus
  197. R. K. Dagda, S. J. Cherra, S. M. Kulich, A. Tandon, D. Park, and C. T. Chu, “Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission,” Journal of Biological Chemistry, vol. 284, no. 20, pp. 13843–13855, 2009. View at Publisher · View at Google Scholar · View at Scopus
  198. D. C. Rubinsztein, M. DiFiglia, N. Heintz et al., “Autophagy and its possible roles in nervous system diseases, damage and repair,” Autophagy, vol. 1, no. 1, pp. 11–22, 2005. View at Google Scholar · View at Scopus
  199. J. H. Zhu, F. Guo, J. Shelburne, S. Watkins, and C. T. Chu, “Localization of phosphorylated ERK/MAP kinases to mitochondria and autophagosomes in lewy body diseases,” Brain Pathology, vol. 13, no. 4, pp. 473–481, 2003. View at Google Scholar · View at Scopus
  200. R. A. Nixon, J. Wegiel, A. Kumar et al., “Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study,” Journal of Neuropathology and Experimental Neurology, vol. 64, no. 2, pp. 113–122, 2005. View at Google Scholar
  201. S. J. Cherra and C. T. Chu, “Autophagy in neuroprotection and neurodegeneration: a question of balance,” Future Neurology, vol. 3, no. 3, pp. 309–323, 2008. View at Publisher · View at Google Scholar · View at Scopus
  202. A. Martínez, M. Portero-Otin, R. Pamplona, and I. Ferrer, “Protein targets of oxidative damage in human neurodegenerative diseases with abnormal protein aggregates,” Brain Pathology, vol. 20, no. 2, pp. 281–297, 2010. View at Publisher · View at Google Scholar
  203. L. Zheng, K. Kågedal, N. Dehvari et al., “Oxidative stress induces macroautophagy of amyloid β-protein and ensuing apoptosis,” Free Radical Biology and Medicine, vol. 46, no. 3, pp. 422–429, 2009. View at Publisher · View at Google Scholar
  204. P. I. Moreira, S. L. Siedlak, X. Wang et al., “Erratum: increased autophagic degradation of mitochondria in Alzheimer disease (Autophagy),” Autophagy, vol. 3, no. 6, pp. 614–615, 2007. View at Google Scholar · View at Scopus
  205. B. Ravikumar, R. Duden, and D. C. Rubinsztein, “Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy,” Human Molecular Genetics, vol. 11, no. 9, pp. 1107–1117, 2002. View at Google Scholar · View at Scopus
  206. J. L. Webb, B. Ravikumar, J. Atkins, J. N. Skepper, and D. C. Rubinsztein, “α-synuclein is degraded by both autophagy and the proteasome,” Journal of Biological Chemistry, vol. 278, no. 27, pp. 25009–25013, 2003. View at Publisher · View at Google Scholar · View at Scopus
  207. J.-A. Lee and F.-B. Gao, “Regulation of Aβ pathology by beclin 1: a protective role for autophagy?” Journal of Clinical Investigation, vol. 118, no. 6, pp. 2015–2018, 2008. View at Publisher · View at Google Scholar
  208. B. Ravikumar, C. Vacher, Z. Berger et al., “Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease,” Nature Genetics, vol. 36, no. 6, pp. 585–595, 2004. View at Publisher · View at Google Scholar · View at Scopus
  209. D. Narendra, A. Tanaka, D. F. Suen, and R. J. Youle, “Parkin is recruited selectively to impaired mitochondria and promotes their autophagy,” Journal of Cell Biology, vol. 183, no. 5, pp. 795–803, 2008. View at Publisher · View at Google Scholar · View at Scopus
  210. O. Warburg, “On the origin of cancer cells,” Science, vol. 123, no. 3191, pp. 309–314, 1956. View at Google Scholar · View at Scopus
  211. D. C. Wallace, “Mitochondria and cancer: warburg addressed,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 70, pp. 363–374, 2005. View at Publisher · View at Google Scholar · View at Scopus
  212. M. Brandon, P. Baldi, and D. C. Wallace, “Mitochondrial mutations in cancer,” Oncogene, vol. 25, no. 34, pp. 4647–4662, 2006. View at Publisher · View at Google Scholar · View at Scopus
  213. A. Chatterjee, E. Mambo, and D. Sidransky, “Mitochondrial DNA mutations in human cancer,” Oncogene, vol. 25, no. 34, pp. 4663–4674, 2006. View at Publisher · View at Google Scholar · View at Scopus
  214. J. A. Petros, A. K. Baumann, E. Ruiz-Pesini et al., “MtDNA mutations increase tumorigenicity in prostate cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 3, pp. 719–724, 2005. View at Publisher · View at Google Scholar · View at Scopus
  215. I. Trounce, S. Neill, and D. C. Wallace, “Cytoplasmic transfer of the mtDNA nt 8993 T → G (ATP6) point mutation associated with Leigh syndrome into mtDNA-less cells demonstrates cosegregation with a decrease in state III respiration and ADP/O ratio,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 18, pp. 8334–8338, 1994. View at Google Scholar · View at Scopus
  216. Y. Li, T. T. Huang, E. J. Carlson et al., “Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase,” Nature Genetics, vol. 11, no. 4, pp. 376–381, 1995. View at Google Scholar · View at Scopus
  217. S. Melov, P. Coskun, M. Patel et al., “Mitochondrial disease in superoxide dismutase 2 mutant mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 3, pp. 846–851, 1999. View at Publisher · View at Google Scholar · View at Scopus
  218. S. Melov, J. A. Schneider, B. J. Day et al., “A novel neurological phenotype in mice lacking mitochondrial manganese superoxide dismutase,” Nature Genetics, vol. 18, no. 2, pp. 159–163, 1998. View at Publisher · View at Google Scholar · View at Scopus
  219. J. E. Kokoszka, P. Coskun, L. A. Esposito, and D. C. Wallace, “Increased mitochondrial oxidative stress in the Sod2 (+/-) mouse results in the age-related decline of mitochondrial function culminating in increased apoptosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 5, pp. 2278–2283, 2001. View at Publisher · View at Google Scholar · View at Scopus
  220. Y. S. Ho, R. Vincent, M. S. Dey, J. W. Slot, and J. D. Crapo, “Transgenic models for the study of lung antioxidant defense: enhanced manganese-containing superoxide dismutase activity gives partial protection to b6c3 hybrid mice exposed to hyperoxia,” American Journal of Respiratory Cell and Molecular Biology, vol. 18, no. 4, pp. 538–547, 1998. View at Google Scholar · View at Scopus
  221. D. Hu, P. Cao, E. Thiels et al., “Hippocampal long-term potentiation, memory, and longevity in mice that overexpress mitochondrial superoxide dismutase,” Neurobiology of Learning and Memory, vol. 87, no. 3, pp. 372–384, 2007. View at Publisher · View at Google Scholar · View at Scopus
  222. Y. C. Jang, V. I. Pérez, W. Song et al., “Overexpression of Mn superoxide dismutase does not increase life span in mice,” Journals of Gerontology A, vol. 64, no. 11, pp. 1114–1125, 2009. View at Publisher · View at Google Scholar
  223. I. Raineri, E. J. Carlson, R. Gacayan et al., “Strain-dependent high-level expression of a transgene for manganese superoxide dismutase is associated with growth retardation and decreased fertility,” Free Radical Biology and Medicine, vol. 31, no. 8, pp. 1018–1030, 2001. View at Publisher · View at Google Scholar · View at Scopus
  224. B. H. Graham, K. G. Waymire, B. Cottrell, I. A. Trounce, G. R. MacGregor, and D. C. Wallace, “A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator,” Nature Genetics, vol. 16, no. 3, pp. 226–234, 1997. View at Publisher · View at Google Scholar · View at Scopus
  225. D. G. Murdock, B. E. Boone, L. A. Esposito, and D. C. Wallace, “Up-regulation of nuclear and mitochondrial genes in the skeletal muscle of mice lacking the heart/muscle isoform of the adenine nucleotide translocator,” Journal of Biological Chemistry, vol. 274, no. 20, pp. 14429–14433, 1999. View at Publisher · View at Google Scholar · View at Scopus
  226. L. A. Esposito, S. Melov, A. Panov, B. A. Cottrell, and D. C. Wallace, “Mitochondrial disease in mouse results in increased oxidative stress,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 9, pp. 4820–4825, 1999. View at Publisher · View at Google Scholar · View at Scopus
  227. M. Behrens, G. Michaelis, and E. Pratje, “Mitochondrial inner membrane protease 1 of Saccharomyces cerevisiae shows sequence similarity to the Escherichia coli leader peptidase,” Molecular and General Genetics, vol. 228, no. 1-2, pp. 167–176, 1991. View at Google Scholar · View at Scopus
  228. J. Nunnari, T. D. Fox, and P. Walter, “A mitochondrial protease with two catalytic subunits of nonoverlapping specificities,” Science, vol. 262, no. 5142, pp. 1997–2004, 1993. View at Google Scholar · View at Scopus
  229. M. D. Brand, “The sites and topology of mitochondrial superoxide production,” Experimental Gerontology, vol. 45, no. 7-8, pp. 466–472, 2010. View at Publisher · View at Google Scholar · View at Scopus
  230. B. Lu, C. Poirier, T. Gaspar et al., “A mutation in the inner mitochondrial membrane peptidase 2-like gene (Immp2l) affects mitochondrial function and impairs fertility in mice,” Biology of Reproduction, vol. 78, no. 4, pp. 601–610, 2008. View at Publisher · View at Google Scholar · View at Scopus