Table of Contents
Journal of Signal Transduction
Volume 2012, Article ID 649079, 12 pages
http://dx.doi.org/10.1155/2012/649079
Review Article

The Role of p38 MAPK and Its Substrates in Neuronal Plasticity and Neurodegenerative Disease

School of Life Sciences, The University of Warwick, Coventry CV4 7AL, UK

Received 5 March 2012; Accepted 10 May 2012

Academic Editor: J. Simon C. Arthur

Copyright © 2012 Sônia A. L. Corrêa and Katherine L. Eales. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Cuadrado and A. Nebreda, “Mechanisms and functions of p38 MAPK signalling,” Biochemical Journal, vol. 429, no. 3, pp. 403–417, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. Z. Wang, P. C. Harkins, R. J. Ulevitch, J. Han, M. H. Cobb, and E. J. Goldsmith, “The structure of mitogen-activated protein kinase p38 at 2.1-å resolution,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 6, pp. 2327–2332, 1997. View at Google Scholar · View at Scopus
  3. R. Ben-Levy, S. Hooper, R. Wilson, H. F. Paterson, and C. J. Marshall, “Nuclear export of the stress-activated protein kinase p38 mediated by its substrate MAPKAP kinase-2,” Current Biology, vol. 8, no. 19, pp. 1049–1057, 1998. View at Google Scholar · View at Scopus
  4. T. Tomida, M. Takekawa, P. O'Grady, and H. Saito, “Stimulus-specific distinctions in spatial and temporal dynamics of stress-activated protein kinase kinase kinases revealed by a fluorescence resonance energy transfer biosensor,” Molecular and Cellular Biology, vol. 29, no. 22, pp. 6117–6127, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Cuenda and S. Rousseau, “P38 MAP-kinases pathway regulation, function and role in human diseases,” Biochimica et Biophysica Acta, vol. 1773, no. 8, pp. 1358–1375, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Risco and A. Cuenda, “New insights into the p38 γ and p38 δ MAPK pathways,” Journal of Signal Transduction, vol. 2012, Article ID 520289, 8 pages, 2012. View at Publisher · View at Google Scholar
  7. L. Munoz and A. J. Ammit, “Targeting p38 MAPK pathway for the treatment of Alzheimer's disease,” Neuropharmacology, vol. 58, no. 3, pp. 561–568, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. J. D. English and J. D. Sweatt, “A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation,” The Journal of Biological Chemistry, vol. 272, no. 31, pp. 19103–19106, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. G. M. Thomas and R. L. Huganir, “MAPK cascade signalling and synaptic plasticity,” Nature Reviews Neuroscience, vol. 5, no. 3, pp. 173–183, 2004. View at Google Scholar · View at Scopus
  10. V. A. Beardmore, H. J. Hinton, C. Eftychi et al., “Generation and characterization of p38β (MAPK11) gene-targeted mice,” Molecular and Cellular Biology, vol. 25, no. 23, pp. 10454–10464, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. S. H. Lee, J. Park, Y. Che, P. L. Han, and J. K. Lee, “Constitutive activity and differential localization of p38α and p38β MAPKs in adult mouse brain,” Journal of Neuroscience Research, vol. 60, no. 5, pp. 623–631, 2000. View at Google Scholar
  12. J. Bain, L. Plater, M. Elliott et al., “The selectivity of protein kinase inhibitors: a further update,” Biochemical Journal, vol. 408, no. 3, pp. 297–315, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Da Silva, B. Pierrat, J. L. Mary, and W. Lesslauer, “Blockade of p38 mitogen-activated protein kinase pathway inhibits inducible nitric-oxide synthase expression in mouse astrocytes,” The Journal of Biological Chemistry, vol. 272, no. 45, pp. 28373–28380, 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. J. I. Kakimura, Y. Kitamura, K. Takata et al., “Microglial activation and amyloid-β clearance induced by exogenous heat-shock proteins,” FASEB Journal, vol. 16, no. 6, pp. 601–603, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Richter-Landsberg, A. Wyttenbach, and A. P. Arrigo, “The role of heat shock proteins during neurodegeneration in Alzheimer's, Parkinson's and Huntington's disease,” in Heat Shock Proteins in Neural Cells, pp. 81–99, Springer, New York, NY, USA, 2009. View at Google Scholar
  16. G. L. Collingridge, J. T. R. Isaac, and Y. T. Wang, “Receptor trafficking and synaptic plasticity,” Nature Reviews Neuroscience, vol. 5, no. 12, pp. 952–962, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. J. D. Shepherd and R. L. Huganir, “The cell biology of synaptic plasticity: AMPA receptor trafficking,” Annual Review of Cell and Developmental Biology, vol. 23, pp. 613–643, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. G. L. Collingridge, S. Peineau, J. G. Howland, and Y. T. Wang, “Long-term depression in the CNS,” Nature Reviews Neuroscience, vol. 11, no. 7, pp. 459–473, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. C. M. Gladding, S. M. Fitzjohn, and E. Molnár, “Metabotropic glutamate receptor-mediated long-term depression: molecular mechanisms,” Pharmacological Reviews, vol. 61, no. 4, pp. 395–412, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. P. R. Moult, S. A. L. Corrêa, G. L. Collingridge, S. M. Fitzjohn, and Z. I. Bashir, “Co-activation of p38 mitogen-activated protein kinase and protein tyrosine phosphatase underlies metabotropic glutamate receptor-dependent long-term depression,” Journal of Physiology, vol. 586, no. 10, pp. 2499–2510, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Arthur, “MSK activation and physiological roles,” Frontiers in Bioscience, vol. 13, pp. 5866–5879, 2008. View at Google Scholar · View at Scopus
  22. B. G. Frenguelli and S. A. L. Corrêa, “Regulation and role of MSK in the mammalian brain,” in MSKs, J. S. C. Arthur, Ed., Landes Bioscience, Austin, Tex, USA, 2012. View at Google Scholar
  23. C. C. Huang, J. L. You, M. Y. Wu, and K. S. Hsu, “Rap1-induced p38 mitogen-activated protein kinase activation facilitates AMPA receptor trafficking via the GDI·Rab5 complex: potential role in (S)-3,5-dihydroxyphenylglycine-induced long term depression,” The Journal of Biological Chemistry, vol. 279, no. 13, pp. 12286–12292, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. J. G. Hanley, “AMPA receptor trafficking pathways and links to dendritic spine morphogenesis,” Cell Adhesion & Migration, vol. 2, no. 4, pp. 276–282, 2008. View at Google Scholar · View at Scopus
  25. J. Han, J. D. Lee, L. Bibbs, and R. J. Ulevitch, “A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells,” Science, vol. 265, no. 5173, pp. 808–811, 1994. View at Google Scholar · View at Scopus
  26. J. Rouse, P. Cohen, S. Trigon et al., “A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins,” Cell, vol. 78, no. 6, pp. 1027–1037, 1994. View at Publisher · View at Google Scholar · View at Scopus
  27. N. W. Freshney, L. Rawlinson, F. Guesdon et al., “Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27,” Cell, vol. 78, no. 6, pp. 1039–1049, 1994. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Shi and M. Gaestel, “In the cellular garden of forking paths: how p38 MAPKs signal for downstream assistance,” Biological Chemistry, vol. 383, no. 10, pp. 1519–1536, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Gaestel, “MAPKAP kinases—MKs—two's company, three's a crowd,” Nature Reviews Molecular Cell Biology, vol. 7, no. 2, pp. 120–130, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. A. White, C. A. Pargellis, J. M. Studts, B. G. Werneburg, and B. T. Farmer, “Molecular basis of MAPK-activated protein kinase 2: p38 assembly,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 15, pp. 6353–6358, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. L. J. Vician, G. Xu, W. Liu, J. D. Feldman, H. B. Machado, and H. R. Herschman, “MAPKAP kinase-2 is a primary response gene induced by depolarization in PC12 cells and in brain,” Journal of Neuroscience Research, vol. 78, no. 3, pp. 315–328, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Stokoe, K. Engel, D. G. Campbell, P. Cohen, and M. Gaestel, “Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins,” FEBS Letters, vol. 313, no. 3, pp. 307–313, 1992. View at Publisher · View at Google Scholar · View at Scopus
  33. L. New and J. Han, “The p38 MAP kinase pathway and its biological function,” Trends in Cardiovascular Medicine, vol. 8, no. 5, pp. 220–228, 1998. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Singh, D. W. Powell, M. J. Rane et al., “Identification of the p16-Arc subunit of the Arp 2/3 complex as a substrate of MAPK-activated protein kinase 2 by proteomic analysis,” The Journal of Biological Chemistry, vol. 278, no. 38, pp. 36410–36417, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. C. E. Eyers, H. McNeill, A. Knebel et al., “The phosphorylation of capz-interacting protein (capzip) by stress-activated protein kinases triggers its dissociation from capz,” Biochemical Journal, vol. 389, part 1, pp. 127–135, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. C. K. Huang, L. Zhan, Y. Ai, and J. Jongstra, “Lsp1 is the major substrate for mitogen-activated protein kinase-activated protein kinase 2 in human neutrophils,” The Journal of Biological Chemistry, vol. 272, no. 1, pp. 17–19, 1997. View at Publisher · View at Google Scholar · View at Scopus
  37. N. Ronkina, M. Menon, J. Schwermann et al., “Stress induced gene expression: a direct role for MAPKAP kinases in transcriptional activation of immediate early genes,” Nucleic Acids Research, vol. 39, no. 7, pp. 2503–2518, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. S. A. Pintchovski, C. L. Peebles, H. J. Kim, E. Verdin, and S. Finkbeiner, “The serum response factor and a putative novel transcription factor regulate expression of the immediate-early gene Arc/Arg3.1 in neurons,” Journal of Neuroscience, vol. 29, no. 5, pp. 1525–1537, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. C. R. Bramham, M. N. Alme, M. Bittins et al., “The Arc of synaptic memory,” Experimental Brain Research, vol. 200, no. 2, pp. 125–140, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. C. L. Peebles, J. Yoo, M. T. Thwin, J. J. Palop, J. L. Noebels, and S. Finkbeiner, “Arc regulates spine morphology and maintains network stability in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 42, pp. 18173–18178, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Chowdhury, J. D. Shepherd, H. Okuno et al., “Arc/Arg3. 1 interacts with the endocytic machinery to regulate AMPA receptor trafficking,” Neuron, vol. 52, no. 3, pp. 445–459, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Wu, R. S. Petralia, H. Kurushima et al., “Arc/Arg3. 1 regulates an endosomal pathway essential for activity-dependent β-amyloid generation,” Cell, vol. 147, no. 3, pp. 615–628, 2011. View at Google Scholar
  43. C. Ballatore, M. Y. L. Virginia, and J. Q. Trojanowski, “Tau-mediated neurodegeneration in Alzheimer's disease and related disorders,” Nature Reviews Neuroscience, vol. 8, no. 9, pp. 663–672, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. D. P. Hanger, B. H. Anderton, and W. Noble, “Tau phosphorylation: the therapeutic challenge for neurodegenerative disease,” Trends in Molecular Medicine, vol. 15, no. 3, pp. 112–119, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. B. R. Hoover, M. N. Reed, J. Su et al., “Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration,” Neuron, vol. 68, no. 6, pp. 1067–1081, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. L. Martin, X. Latypova, and F. Terro, “Post-translational modifications of tau protein: implications for Alzheimer's disease,” Neurochemistry International, vol. 58, no. 4, pp. 458–471, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. L. Buée, T. Bussière, V. Buée-Scherrer, A. Delacourte, and P. R. Hof, “Tau protein isoforms, phosphorylation and role in neurodegenerative disorders,” Brain Research Reviews, vol. 33, no. 1, pp. 95–130, 2000. View at Publisher · View at Google Scholar · View at Scopus
  48. L. I. Binder, A. Frankfurter, and L. I. Rebhun, “The distribution of tau in the mammalian central nervous system,” Journal of Cell Biology, vol. 101, no. 4, pp. 1371–1378, 1985. View at Google Scholar · View at Scopus
  49. C. Dotti, G. Banker, and L. Binder, “The expression and distribution of the microtubule-associated proteins tau and microtubule-associated protein 2 in hippocampal neurons in the rat in situ and in cell culture,” Neuroscience, vol. 23, no. 1, pp. 121–130, 1987. View at Google Scholar · View at Scopus
  50. J. W. Mandell and G. A. Banker, “A spatial gradient of tau protein phosphorylation in nascent axons,” Journal of Neuroscience, vol. 16, no. 18, pp. 5727–5740, 1996. View at Google Scholar · View at Scopus
  51. J. Avila, J. J. Lucas, M. Pérez, and F. Hernández, “Role of tau protein in both physiological and pathological conditions,” Physiological Reviews, vol. 84, no. 2, pp. 361–384, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. S. C. Papasozomenos and L. I. Binder, “Phosphorylation determines two distinct species of tau in the central nervous system,” Cell Motility and the Cytoskeleton, vol. 8, no. 3, pp. 210–226, 1987. View at Google Scholar · View at Scopus
  53. C. A. Dickey, A. Kamal, K. Lundgren et al., “The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins,” The Journal of Clinical Investigation, vol. 117, no. 3, pp. 648–658, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Sengupta, J. Kabat, M. Novak, Q. Wu, I. Grundke-Iqbal, and K. Iqbal, “Phosphorylation of tau at both Thr 231 and Ser 262 is required for maximal inhibition of its binding to microtubules,” Archives of Biochemistry and Biophysics, vol. 357, no. 2, pp. 299–309, 1998. View at Publisher · View at Google Scholar · View at Scopus
  55. W. J. Streit, R. E. Mrak, and W. S. T. Griffin, “Microglia and neuroinflammation: a pathological perspective,” Journal of Neuroinflammation, vol. 1, article 14, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. C. Chao, S. Hu, and P. Peterson, “Glia, cytokines, and neurotoxicity,” Critical Reviews in Neurobiology, vol. 9, no. 2-3, pp. 189–205, 1995. View at Google Scholar · View at Scopus
  57. S. D. Skaper, “The brain as a target for inflammatory processes and neuroprotective strategies,” Annals of the New York Academy of Sciences, vol. 1122, no. 1, pp. 23–34, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. S. J. Harper and P. Lograsso, “Signalling for survival and death in neurones: the role of stress-activated kinases, JNK and p38,” Cellular Signalling, vol. 13, no. 5, pp. 299–310, 2001. View at Publisher · View at Google Scholar · View at Scopus
  59. T. Obata, G. E. Brown, and M. B. Yaffe, “Map kinase pathways activated by stress: the p38 MAPK pathway,” Critical Care Medicine, vol. 28, no. 4, pp. 67–77, 2000. View at Google Scholar · View at Scopus
  60. A. Kotlyarov, A. Neininger, C. Schubert et al., “MAPKAP kinase 2 is essential for LPS-induced TNF-α biosynthesis,” Nature Cell Biology, vol. 1, no. 2, pp. 94–97, 1999. View at Google Scholar · View at Scopus
  61. N. Fyhrquist, S. Matikainen, and A. Lauerma, “MK2 signaling: lessons on tissue specificity in modulation of inflammation,” Journal of Investigative Dermatology, vol. 130, no. 2, pp. 342–344, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Neininger, D. Kontoyiannis, A. Kotlyarov et al., “MK2 targets AU-rich elements and regulates biosynthesis of tumor necrosis factor and interleukin-6 independently at different post-transcriptional levels,” The Journal of Biological Chemistry, vol. 277, no. 5, pp. 3065–3068, 2002. View at Publisher · View at Google Scholar · View at Scopus
  63. A. A. Culbert, S. D. Skaper, D. R. Howlett et al., “MAPK-activated protein kinase 2 deficiency in microglia inhibits pro-inflammatory mediator release and resultant neurotoxicity: relevance to neuroinflammation in a transgenic mouse model of Alzheimer disease,” The Journal of Biological Chemistry, vol. 281, no. 33, pp. 23658–23667, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. R. Brookmeyer, E. Johnson, K. Ziegler-Graham, and H. M. Arrighi, “Forecasting the global burden of Alzheimer's disease,” Alzheimer's and Dementia, vol. 3, no. 3, pp. 186–191, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. S. T. DeKosky and S. W. Scheff, “Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity,” Annals of Neurology, vol. 27, no. 5, pp. 457–464, 1990. View at Google Scholar · View at Scopus
  66. M. Knobloch and I. M. Mansuy, “Dendritic spine loss and synaptic alterations in Alzheimer's disease,” Molecular Neurobiology, vol. 37, no. 1, pp. 73–82, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. I. Ferrer, F. Cruz-Sanchez, N. Guionnet, and T. Tunon, “A study of senile plaques with a combined method in brains of patients suffering from Alzheimer's disease,” Archivos de Neurobiologia, vol. 53, no. 6, pp. 222–226, 1990. View at Google Scholar · View at Scopus
  68. P. Penzes and J. E. VanLeeuwen, “Impaired regulation of synaptic actin cytoskeleton in Alzheimer's disease,” Brain Research Reviews, vol. 67, no. 1-2, pp. 184–192, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. P. N. Lacor, M. C. Buniel, L. Chang et al., “Synaptic targeting by Alzheimer's-related amyloid β oligomers,” Journal of Neuroscience, vol. 24, no. 45, pp. 10191–10200, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. P. N. Lacor, M. C. Buniel, P. W. Furlow et al., “Aβ oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer's disease,” Journal of Neuroscience, vol. 27, no. 4, pp. 796–807, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. K. Hensley, R. A. Floyd, N. Y. Zheng et al., “P38 kinase is activated in the Alzheimer's disease brain,” Journal of Neurochemistry, vol. 72, no. 5, pp. 2053–2058, 1999. View at Publisher · View at Google Scholar · View at Scopus
  72. T. A. Fulga, I. Elson-Schwab, V. Khurana et al., “Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo,” Nature Cell Biology, vol. 9, no. 2, pp. 139–148, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. D. M. Moraga, P. Nunez, J. Garrido, and R. B. Maccioni, “A τ fragment containing a repetitive sequence induces bundling of actin filaments,” Journal of Neurochemistry, vol. 61, no. 3, pp. 979–986, 1993. View at Google Scholar · View at Scopus
  74. P. K. Krishnamurthy and G. V. W. Johnson, “Mutant (r406w) human tau is hyperphosphorylated and does not efficiently bind microtubules in a neuronal cortical cell model,” The Journal of Biological Chemistry, vol. 279, no. 9, pp. 7893–7900, 2004. View at Publisher · View at Google Scholar · View at Scopus
  75. G. A. Farias, J. P. Munoz, J. Garrido, and R. B. Maccioni, “Tubulin, actin, and tau protein interactions and the study of their macromolecular assemblies,” Journal of Cellular Biochemistry, vol. 85, no. 2, pp. 315–324, 2002. View at Publisher · View at Google Scholar · View at Scopus
  76. J. Z. Yu and M. M. Rasenick, “Tau associates with actin in differentiating PC12 cells,” FASEB Journal, vol. 20, no. 9, pp. 1452–1461, 2006. View at Publisher · View at Google Scholar · View at Scopus
  77. H. He, X. Wang, R. Pan, D. Wang, M. Liu, and R. He, “The proline-rich domain of tau plays a role in interactions with actin,” BMC Cell Biology, vol. 10, no. 1, article 81, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. P. Hotulainen and C. C. Hoogenraad, “Actin in dendritic spines: connecting dynamics to function,” Journal of Cell Biology, vol. 189, no. 4, pp. 619–629, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. D. L. Rocca, S. Martin, E. L. Jenkins, and J. G. Hanley, “Inhibition of Arp2/3-mediated actin polymerization by PICK1 regulates neuronal morphology and AMPA receptor endocytosis,” Nature Cell Biology, vol. 10, no. 3, pp. 259–271, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. Y. Nakamura, C. L. Wood, A. P. Patton et al., “PICK1 inhibition of the Arp2/3 complex controls dendritic spine size and synaptic plasticity,” EMBO Journal, vol. 30, no. 4, pp. 719–730, 2011. View at Publisher · View at Google Scholar · View at Scopus
  81. H. Pyo, I. Jou, S. Jung, S. Hong, and E. Joe, “Mitogen-activated protein kinases activated by lipopolysaccharide and β-amyloid in cultured rat microglia,” Neuroreport, vol. 9, no. 5, pp. 871–874, 1998. View at Google Scholar · View at Scopus
  82. L. Munoz, H. Ranaivo, S. Roy et al., “A novel p38α MAPK inhibitor suppresses brain proinflammatory cytokine up-regulation and attenuates synaptic dysfunction and behavioral deficits in an Alzheimer's disease mouse model,” Journal of Neuroinflammation, vol. 4, no. 1, article 21, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. S. H. Kim, C. J. Smith, and L. J. Van Eldik, “Importance of MAPK pathways for microglial pro-inflammatory cytokine IL-1β production,” Neurobiology of Aging, vol. 25, no. 4, pp. 431–439, 2004. View at Publisher · View at Google Scholar · View at Scopus
  84. A. M. Bodles and S. W. Barger, “Secreted β-amyloid precursor protein activates microglia via JNK and p38-MAPK,” Neurobiology of Aging, vol. 26, no. 1, pp. 9–16, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. D. T. Weldon, S. D. Rogers, J. R. Ghilardi et al., “Fibrillar β-amyloid induces microglial phagocytosis, expression of inducible nitric oxide synthase, and loss of a select population of neurons in the rat CNS in vivo,” Journal of Neuroscience, vol. 18, no. 6, pp. 2161–2173, 1998. View at Google Scholar · View at Scopus
  86. K. Shigematsu, P. McGeer, D. Walker, T. Ishii, and E. McGeer, “Reactive microglia/macrophages phagocytose amyloid precursor protein produced by neurons following neural damage,” Journal of Neuroscience Research, vol. 31, no. 3, pp. 443–453, 1992. View at Publisher · View at Google Scholar · View at Scopus
  87. M. G. Giovannini, C. Scali, C. Prosperi et al., “β-amyloid-induced inflammation and cholinergic hypofunction in the rat brain in vivo: involvement of the p38MAPK pathway,” Neurobiology of Disease, vol. 11, no. 2, pp. 257–274, 2002. View at Publisher · View at Google Scholar · View at Scopus
  88. Y. Li, L. Liu, S. W. Barger, and W. S. T. Griffin, “Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway,” Journal of Neuroscience, vol. 23, no. 5, pp. 1605–1611, 2003. View at Google Scholar · View at Scopus
  89. I. Ferrer, “Stress kinases involved in tau phosphorylation in Alzheimer's disease, tauopathies and APP transgenic mice,” Neurotoxicity Research, vol. 6, no. 6, pp. 469–475, 2004. View at Publisher · View at Google Scholar · View at Scopus
  90. M. J. Savage, Y. G. Lin, J. R. Ciallella, D. G. Flood, and R. W. Scott, “Activation of c-jun N-terminal kinase and p38 in an Alzheimer's disease model is associated with amyloid deposition,” Journal of Neuroscience, vol. 22, no. 9, pp. 3376–3385, 2002. View at Google Scholar · View at Scopus
  91. X. Zhu, C. A. Rottkamp, A. Hartzler et al., “Activation of MKK6, an upstream activator of p38, in Alzheimer's disease,” Journal of Neurochemistry, vol. 79, no. 2, pp. 311–318, 2001. View at Publisher · View at Google Scholar · View at Scopus
  92. Y. Hashimoto, T. Niikura, T. Chiba et al., “The cytoplasmic domain of Alzheimer's amyloid-β protein precursor causes sustained apoptosis signal-regulating kinase 1/c-Jun NH 2-terminal kinase-mediated neurotoxic signal via dimerization,” Journal of Pharmacology and Experimental Therapeutics, vol. 306, no. 3, pp. 889–902, 2003. View at Publisher · View at Google Scholar · View at Scopus
  93. A. L. Peel, N. Sorscher, J. Y. Kim, V. Galvan, S. Chen, and D. E. Bredesen, “Tau phosphorylation in Alzheimer's disease: potential involvement of an APP-MAP kinase complex,” Neuromolecular Medicine, vol. 5, no. 3, pp. 205–218, 2004. View at Publisher · View at Google Scholar · View at Scopus
  94. G. T. Bramblett, M. Goedert, R. Jakes, S. E. Merrick, J. Q. Trojanowski, and V. M. Y. Lee, “Abnormal tau phosphorylation at Ser396 in Alzheimer's disease recapitulates development and contributes to reduced microtubule binding,” Neuron, vol. 10, no. 6, pp. 1089–1099, 1993. View at Publisher · View at Google Scholar · View at Scopus
  95. A. W. Hartzler, X. Zhu, S. L. Siedlak et al., “The p38 pathway is activated in pick disease and progressive supranuclear palsy: a mechanistic link between mitogenic pathways, oxidative stress, and tau,” Neurobiology of Aging, vol. 23, no. 5, pp. 855–859, 2002. View at Publisher · View at Google Scholar · View at Scopus
  96. Parkinson's UK, Number of people with Parkinson's in the uk set to rise, 2012, http://www.parkinsons.org.uk/about_us/news/news_items/all_news/new_parkinsons_prevalence.aspx.
  97. W. Poewe, “Non-motor symptoms in Parkinson's disease,” European Journal of Neurology, vol. 15, no. 1, pp. 14–20, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. S. Lesage and A. Brice, “Parkinson's disease: from monogenic forms to genetic susceptibility factors,” Human Molecular Genetics, vol. 18, no. 1, pp. R48–R59, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. M. R. Cookson, “α-synuclein and neuronal cell death,” Molecular Neurodegeneration, vol. 4, no. 1, article 9, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. A. Klegeris, S. Pelech, B. I. Giasson et al., “α-synuclein activates stress signaling protein kinases in THP-1 cells and microglia,” Neurobiology of Aging, vol. 29, no. 5, pp. 739–752, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. T. Thomas, M. Timmer, K. Cesnulevicius, E. Hitti, A. Kotlyarov, and M. Gaestel, “MAPKAP kinase 2-deficiency prevents neurons from cell death by reducing neuroinflammation—relevance in a mouse model of Parkinson's disease,” Journal of Neurochemistry, vol. 105, no. 5, pp. 2039–2052, 2008. View at Publisher · View at Google Scholar · View at Scopus