Table of Contents
Journal of Signal Transduction
Volume 2012, Article ID 684592, 10 pages
http://dx.doi.org/10.1155/2012/684592
Research Article

Mitochondrial Oxidative Stress due to Complex I Dysfunction Promotes Fibroblast Activation and Melanoma Cell Invasiveness

1Department of Biochemical Sciences, Tuscany Tumor Institute, University of Florence, Morgagni Avenue 50, 50134 Florence, Italy
2Center for Research, Transfer and High Education Study at Molecular and Clinical Level of Chronic, Inflammatory, Degenerative and Neoplastic Disorders for the Development on Novel Therapies, University of Florence, 50134 Florence, Italy
3Department of Medical Biochemistry, Biology and Physics, University of Bari, Policlinico, G. Cesare Square 70124 Bari, Italy
4Institute of Biomembrane and Bioenergetic, CNR, Amendola Street 176, 70126 Bari, Italy

Received 15 July 2011; Accepted 22 September 2011

Academic Editor: Paolo Pinton

Copyright © 2012 Maria Letizia Taddei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Ishikawa, K. Takenaga, M. Akimoto et al., “ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis,” Science, vol. 320, no. 5876, pp. 661–664, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. J. A. Joyce and J. W. Pollard, “Microenvironmental regulation of metastasis,” Nature Reviews Cancer, vol. 9, no. 4, pp. 239–252, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Kalluri and M. Zeisberg, “Fibroblasts in cancer,” Nature Reviews Cancer, vol. 6, no. 5, pp. 392–401, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Hinz, “Formation and function of the myofibroblast during tissue repair,” Journal of Investigative Dermatology, vol. 127, no. 3, pp. 526–537, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Gabbiani, G. B. Ryan, and G. Majno, “Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction,” Experientia, vol. 27, no. 5, pp. 549–550, 1971. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Desmoulière, C. Guyot, and G. Gabbiani, “The stroma reaction myofibroblast: a key player in the control of tumor cell behavior,” International Journal of Developmental Biology, vol. 48, no. 5-6, pp. 509–517, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. D. C. Radisky, P. A. Kenny, and M. J. Bissell, “Fibrosis and cancer: do myofibroblasts come also from epithelial cells via EMT?” Journal of Cellular Biochemistry, vol. 101, no. 4, pp. 830–839, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. D. C. Radisky and J. A. Przybylo, “Matrix metalloproteinase-induced fibrosis and malignancy in breast and lung,” Proceedings of the American Thoracic Society, vol. 5, no. 3, pp. 316–322, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Giannoni, F. Bianchini, L. Calorini, and P. Chiarugi, “Cancer associated fibroblasts exploit reactive oxygen species through a proinflammatory signature leading to epithelial mesenchymal transition and stemness,” Antioxidants and Redox Signaling, vol. 14, no. 12, pp. 2361–2371, 2011. View at Publisher · View at Google Scholar
  10. C. Criscuolo, G. Volpe, A. De Rosa et al., “PINK1 homozygous W437X mutation in a patient with apparent dominant transmission of Parkinsonism,” Movement Disorders, vol. 21, no. 8, pp. 1265–1267, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Piccoli, M. Ripoli, G. Quarato et al., “Coexistence of mutations in PINK1 and mitochondrial DNA in early onset parkinsonism,” Journal of Medical Genetics, vol. 45, no. 9, pp. 596–602, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Iuso, S. Scacco, C. Piccoli et al., “Dysfunctions of cellular oxidative metabolism in patients with mutations in the NDUFS1 and NDUFS4 genes of complex I,” Journal of Biological Chemistry, vol. 281, no. 15, pp. 10374–10380, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Piccoli, A. Sardanelli, R. Scrima et al., “Mitochondrial respiratory dysfunction in familiar Parkinsonism associated with PINK1 mutation,” Neurochemical Research, vol. 33, no. 12, pp. 2565–2574, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. F. H. Agani, P. Pichiule, J. C. Chavez, and J. C. LaManna, “The role of mitochondria in the regulation of hypoxia-inducible factor 1 expression during hypoxia,” Journal of Biological Chemistry, vol. 275, no. 46, pp. 35863–35867, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. N. S. Chandel, E. Maltepe, E. Goldwasser, C. E. Mathieu, M. C. Simon, and P. T. Schumacker, “Mitochondrial reactive oxygen species trigger hypoxia-induced transcription,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 20, pp. 11715–11720, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Klimova and N. S. Chandel, “Mitochondrial complex III regulates hypoxic activation of HIF,” Cell Death and Differentiation, vol. 15, no. 4, pp. 660–666, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Cat, D. Stuhlmann, H. Steinbrenner et al., “Enhancement of tumor invasion depends on transdifferentiation of skin fibroblasts mediated by reactive oxygen species,” Journal of Cell Science, vol. 119, no. 13, pp. 2727–2738, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. P. A. Cronin, J. H. Wang, and H. P. Redmond, “Hypoxia increases the metastatic ability of breast cancer cells via upregulation of CXCR4,” BMC Cancer, vol. 10, article 225, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Toullec, D. Gerald, G. Despouy et al., “Oxidative stress promotes myofibroblast differentiation and tumour spreading,” EMBO Molecular Medicine, vol. 2, no. 6, pp. 211–230, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Ronnov-Jessen and O. W. Petersen, “Induction of α-smooth muscle actin by transforming growth factor-β1 in quiescent human breast gland fibroblasts,” Laboratory Investigation, vol. 68, no. 6, pp. 696–707, 1993. View at Google Scholar
  21. M. Selman and A. Pardo, “Role of epithelial cells in idiopathic pulmonary fibrosis: from innocent targets to serial killers,” Proceedings of the American Thoracic Society, vol. 3, no. 4, pp. 364–372, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Kalluri and R. A. Weinberg, “The basics of epithelial-mesenchymal transition,” Journal of Clinical Investigation, vol. 119, no. 6, pp. 1420–1428, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Kurose, K. Gilley, S. Matsumoto, P. H. Watson, X. P. Zhou, and C. Eng, “Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas,” Nature Genetics, vol. 32, no. 3, pp. 355–357, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Tuhkanen, M. Anttila, V. M. Kosma et al., “Genetic alterations in the peritumoral stromal cells of malignant and borderline epithelial ovarian tumors as indicated by allelic imbalance on chromosome 3p,” International Journal of Cancer, vol. 109, no. 2, pp. 247–252, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. D. C. Radisky, D. D. Levy, L. E. Littlepage et al., “Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability,” Nature, vol. 436, no. 7047, pp. 123–127, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Pelicano, W. Lu, Y. Zhou et al., “Mitochondrial dysfunction and reactive oxygen species imbalance promote breast cancer cell motility through a CXCL14-mediated mechanism,” Cancer Research, vol. 69, no. 6, pp. 2375–2383, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Gasparre, A. M. Porcelli, E. Bonora et al., “Disruptive mitochondrial DNA mutations in complex I subunits are markers of oncocytic phenotype in thyroid tumors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 21, pp. 9001–9006, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. S. J. Ralph, S. Rodríguez-Enríquez, J. Neuzil, E. Saavedra, and R. Moreno-Sánchez, “The causes of cancer revisited: “Mitochondrial malignancy” and ROS-induced oncogenic transformation—why mitochondria are targets for cancer therapy,” Molecular Aspects of Medicine, vol. 31, no. 2, pp. 145–170, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Bonora, A. M. Porcelli, G. Gasparre et al., “Defective oxidative phosphorylation in thyroid oncocytic carcinoma is associated with pathogenic mitochondrial DNA mutations affecting complexes I and III,” Cancer Research, vol. 66, no. 12, pp. 6087–6096, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Gasparre, G. Romeo, M. Rugolo, and A. M. Porcelli, “Learning from oncocytic tumors: why choose inefficient mitochondria?” Biochimica et Biophysica Acta, vol. 1807, no. 6, pp. 633–642, 2011. View at Publisher · View at Google Scholar
  31. E. Alirol and J. C. Martinou, “Mitochondria and cancer: is there a morphological connection?” Oncogene, vol. 25, no. 34, pp. 4706–4716, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Chatterjee, E. Mambo, and D. Sidransky, “Mitochondrial DNA mutations in human cancer,” Oncogene, vol. 25, no. 34, pp. 4663–4674, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Bugiani, F. Invernizzi, S. Alberio et al., “Clinical and molecular findings in children with complex I deficiency,” Biochimica et Biophysica Acta, vol. 1659, no. 2-3, pp. 136–147, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. J. L. C. M. Loeffen, J. A. M. Smeitink, J. M. F. Trijbels et al., “Isolated complex I deficiency in children: clinical, biochemical and genetic aspects,” Human Mutation, vol. 15, no. 2, pp. 123–134, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. V. Petruzzella and S. Papa, “Mutations in human nuclear genes encoding for subunits of mitochondrial respiratory complex I: the NDUFS4 gene,” Gene, vol. 286, no. 1, pp. 149–154, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. L. Atorino, L. Silvestri, M. Koppen et al., “Loss of m-AAA protease in mitochondria causes complex I deficiency and increased sensitivity to oxidative stress in hereditary spastic paraplegia,” Journal of Cell Biology, vol. 163, no. 4, pp. 777–787, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Orth and A. H. V. Schapira, “Mitochondria and degenerative disorders,” American Journal of Medical Genetics, vol. 106, no. 1, pp. 27–36, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Papa, “Mitochondrial oxidative phosphorylation changes in the life span. Molecular aspects and physiopathological implications,” Biochimica et Biophysica Acta, vol. 1276, no. 2, pp. 87–105, 1996. View at Publisher · View at Google Scholar · View at Scopus
  39. B. Ventura, M. L. Genova, C. Bovina, G. Formiggini, and G. Lenaz, “Control of oxidative phosphorylation by Complex I in rat liver mitochondria: implications for aging,” Biochimica et Biophysica Acta, vol. 1553, no. 3, pp. 249–260, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Bataller and D. A. Brenner, “Liver fibrosis,” Journal of Clinical Investigation, vol. 115, no. 2, pp. 209–218, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. F. Campana, S. Zervoudis, B. Perdereau et al., “Topical superoxide dismutase reduces post-irradiation breast cancer fibrosis,” Journal of Cellular and Molecular Medicine, vol. 8, no. 1, pp. 109–116, 2004. View at Google Scholar · View at Scopus
  42. S. Delanian, R. Porcher, J. Rudant, and J. L. Lefaix, “Kinetics of response to long-term treatment combining pentoxifylline and tocopherol in patients with superficial radiation-induced fibrosis,” Journal of Clinical Oncology, vol. 23, no. 34, pp. 8570–8579, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Demedts, J. Behr, R. Buhl et al., “High-dose acetylcysteine in idiopathic pulmonary fibrosis,” The New England Journal of Medicine, vol. 353, no. 21, pp. 2229–2242, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. N. S. Chandel, D. S. McClintock, C. E. Feliciano et al., “Reactive oxygen species generated at mitochondrial Complex III stabilize hypoxia-inducible factor-1α during hypoxia: a mechanism of O2 sensing,” Journal of Biological Chemistry, vol. 275, no. 33, pp. 25130–25138, 2000. View at Publisher · View at Google Scholar · View at Scopus
  45. J. K. Brunelle, E. L. Bell, N. M. Quesada et al., “Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation,” Cell Metabolism, vol. 1, no. 6, pp. 409–414, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Orimo, P. B. Gupta, D. C. Sgroi et al., “Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion,” Cell, vol. 121, no. 3, pp. 335–348, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Tsujino, I. Seshimo, H. Yamamoto et al., “Stromal myofibroblasts predict disease recurrence for colorectal cancer,” Clinical Cancer Research, vol. 13, no. 7, pp. 2082–2090, 2007. View at Publisher · View at Google Scholar · View at Scopus