Table of Contents
Journal of Signal Transduction
Volume 2014 (2014), Article ID 173026, 6 pages
http://dx.doi.org/10.1155/2014/173026
Research Article

Signaling Network Map of Endothelial TEK Tyrosine Kinase

1Institute of Bioinformatics, International Tech Park, Whitefield, Bangalore 560066, India
2School of Biotechnology, KIIT University, Bhubaneswar 751024, India
3Dr. M.G.R. Educational and Research Institute, Maduravoyal, Chennai 600095, India
4Manipal University, Madhav Nagar, Manipal 576104, India
5Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
6McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
7Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
8Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
9Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA

Received 22 April 2014; Accepted 15 September 2014; Published 13 October 2014

Academic Editor: Shoukat Dedhar

Copyright © 2014 Aafaque Ahmad Khan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. J. Dumont, G. Gradwohl, G.-H. Fong et al., “Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo,” Genes and Development, vol. 8, no. 16, pp. 1897–1909, 1994. View at Publisher · View at Google Scholar · View at Scopus
  2. A. L. Wong, Z. A. Haroon, S. Werner, M. W. Dewhirst, C. S. Greenberg, and K. G. Peters, “Tie2 expression and phosphorylation in angiogenic and quiescent adult tissues,” Circulation Research, vol. 81, no. 4, pp. 567–574, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. D. J. Dumont, T. P. Yamaguchi, R. A. Conlon, J. Rossant, and M. L. Breitman, “Tek, a novel tyrosine kinase gene located on mouse chromosome 4, is expressed in endothelial cells and their presumptive precursors,” Oncogene, vol. 7, no. 8, pp. 1471–1480, 1992. View at Google Scholar · View at Scopus
  4. U. Fiedler, T. Krissl, S. Koidl et al., “Angiopoietin-1 and angiopoietin-2 share the same binding domains in the Tie-2 receptor involving the first Ig-like loop and the epidermal growth factor-like repeats,” The Journal of Biological Chemistry, vol. 278, no. 3, pp. 1721–1727, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Suri, J. McClain, G. Thurston et al., “Increased vascularization in mice overexpressing angiopoietin-1,” Science, vol. 282, no. 5388, pp. 468–471, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. P. C. Maisonpierre, C. Suri, P. F. Jones et al., “Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis,” Science, vol. 277, no. 5322, pp. 55–60, 1997. View at Publisher · View at Google Scholar · View at Scopus
  7. I. Kim, J.-H. Kim, S.-O. Moon, H. J. Kwak, N.-G. Kim, and G. Y. Koh, “Angiopoietin-2 at high concentration can enhance enthelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway,” Oncogene, vol. 19, no. 39, pp. 4549–4552, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Mochizuki, T. Nakamura, H. Kanetake, and S. Kanda, “Angiopoietin 2 stimulates migration and tube-like structure formation of murine brain capillary endothelial cells through c-Fes and c-Fyn,” Journal of Cell Science, vol. 115, part 1, pp. 175–183, 2002. View at Google Scholar · View at Scopus
  9. K. Teichert-Kuliszewska, P. C. Maisonpierre, N. Jones et al., “Biological action of angiopoietin-2 in a fibrin matrix model of angiogenesis is associated with activation of Tie2,” Cardiovascular Research, vol. 49, no. 3, pp. 659–670, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Davis, T. H. Aldrich, P. F. Jones et al., “Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning,” Cell, vol. 87, no. 7, pp. 1161–1169, 1996. View at Publisher · View at Google Scholar · View at Scopus
  11. D. M. Valenzuela, J. A. Griffiths, J. Rojas et al., “Angiopoietins 3 and 4: diverging gene counterparts in mice and humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 5, pp. 1904–1909, 1999. View at Publisher · View at Google Scholar
  12. T. C. M. Seegar, B. Eller, D. Tzvetkova-Robev et al., “Tie1-Tie2 interactions mediate functional differences between angiopoietin ligands,” Molecular Cell, vol. 37, no. 5, pp. 643–655, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. H. T. Yuan, E. V. Khankin, S. A. Karumanchi, and S. M. Parikh, “Angiopoietin 2 is a partial agonist/antagonist of Tie2 signaling in the endothelium,” Molecular and Cellular Biology, vol. 29, no. 8, pp. 2011–2022, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Singh, T. M. Hansen, N. Patel, and N. P. J. Brindle, “The molecular balance between receptor tyrosine kinases Tie1 and Tie2 is dynamically controlled by VEGF and TNFα and regulates angiopoietin signalling,” PLoS ONE, vol. 7, no. 1, Article ID e29319, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Davis, N. Papadopoulos, T. H. Aldrich et al., “Angiopoietins have distinct modular domains essential for receptor binding, dimerization and superclustering,” Nature Structural Biology, vol. 10, no. 1, pp. 38–44, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Fukuhara, K. Sako, T. Minami et al., “Differential function of Tie2 at cell-cell contacts and cell-substratum contacts regulated by angiopoietin-1,” Nature Cell Biology, vol. 10, no. 5, pp. 513–526, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. K.-T. Kim, H.-H. Choi, M. O. Steinmetz et al., “Oligomerization and multimerization are critical for angiopoietin-1 to bind and phosphorylate Tie2,” Journal of Biological Chemistry, vol. 280, no. 20, pp. 20126–20131, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Brkovic, M. Pelletier, D. Girard, and M. G. Sirois, “Angiopoietin chemotactic activities on neutrophils are regulated by PI-3K activation,” Journal of Leukocyte Biology, vol. 81, no. 4, pp. 1093–1101, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. O. Stoeltzing, S. A. Ahmad, W. Liu et al., “Angiopoietin-1 inhibits vascular permeability, angiogenesis, and growth of hepatic colon cancer tumors,” Cancer Research, vol. 63, no. 12, pp. 3370–3377, 2003. View at Google Scholar · View at Scopus
  20. I. Cascone, E. Audero, E. Giraudo et al., “Tie-2-dependent activation of RhoA and Rac1 participates in endothelial cell motility triggered by angiopoietin-1,” Blood, vol. 102, no. 7, pp. 2482–2490, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Maliba, S. Lapointe, P.-E. Neagoe, A. Brkovic, and M. G. Sirois, “Angiopoietins-1 and -2 are both capable of mediating endothelial PAF synthesis: intracellular signalling pathways,” Cellular Signalling, vol. 18, no. 11, pp. 1947–1957, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Lemieux, R. Maliba, J. Favier, J.-F. Théorêt, Y. Merhi, and M. G. Sirois, “Angiopoietins can directly activate endothelial cells and neutrophils to promote proinflammatory responses,” Blood, vol. 105, no. 4, pp. 1523–1530, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. S. D. McCarter, P. F. H. Lai, R. S. Suen, and D. J. Stewart, “Regulation of endothelin-1 by angiopoietin-1: implications for inflammation,” Experimental Biology and Medicine, vol. 231, no. 6, pp. 985–991, 2006. View at Google Scholar · View at Scopus
  24. S. Dimmeler and A. M. Zeiher, “Akt takes center stage in angiogenesis signaling,” Circulation Research, vol. 86, no. 1, pp. 4–5, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Harfouche, H. M. Hasséssian, Y. Guo et al., “Mechanisms which mediate the antiapoptotic effects of angiopoietin-1 on endothelial cells,” Microvascular Research, vol. 64, no. 1, pp. 135–147, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Daly, V. Wong, E. Burova et al., “Angiopoietin-1 modulates endothelial cell function and gene expression via the transcription factor FKHR (FOXO1),” Genes and Development, vol. 18, no. 9, pp. 1060–1071, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Babaei, K. Teichert-Kuliszewska, Q. Zhang, N. Jones, D. J. Dumont, and D. J. Stewart, “Angiogenic actions of angiopoietin-1 require endothelium-derived nitric oxide,” The American Journal of Pathology, vol. 162, no. 6, pp. 1927–1936, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. J.-X. Chen, M. L. Lawrence, G. Cunningham, B. W. Christman, and B. Meyrick, “HSP90 and Akt modulate Ang-1-induced angiogenesis via NO in coronary artery endothelium,” Journal of Applied Physiology, vol. 96, no. 2, pp. 612–620, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Maliba, A. Brkovic, P.-É. Neagoe, L. R. Villeneuve, and M. G. Sirois, “Angiopoietin-mediated endothelial P-selectin translocation: cell signaling mechanisms,” Journal of Leukocyte Biology, vol. 83, no. 2, pp. 352–360, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Jones, Z. Master, J. Jones et al., “Identification of Tek/Tie2 binding partners. Binding to a multifunctional docking site mediates cell survival and migration,” Journal of Biological Chemistry, vol. 274, no. 43, pp. 30896–30905, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. U. Fiedler, T. Krissl, S. Koidl et al., “Angiopoietin-1 and angiopoietin-2 share the same binding domains in the Tie-2 receptor involving the first Ig-like loop and the epidermal growth factor-like repeats,” Journal of Biological Chemistry, vol. 278, no. 3, pp. 1721–1727, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. K. G. Peters, C. D. Kontos, P. C. Lin et al., “Functional significance of Tie2 signaling in the adult vasculature,” Recent Progress in Hormone Research, vol. 59, pp. 51–71, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Hashiramoto, C. Sakai, K. Yoshida et al., “Angiopoietin 1 directly induces destruction of the rheumatoid joint by cooperative, but independent, signaling via ERK/MAPK and phosphatidylinositol 3-kinase/Akt,” Arthritis and Rheumatism, vol. 56, no. 7, pp. 2170–2179, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Gavard, V. Patel, and J. S. Gutkind, “Angiopoietin-1 prevents VEGF-induced endothelial permeability by sequestering Src through mDia,” Developmental Cell, vol. 14, no. 1, pp. 25–36, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. Z. Master, N. Jones, J. Tran, J. Jones, R. S. Kerbel, and D. J. Dumont, “Dok-R plays a pivotal role in angiopoietin-1-dependent cell migration through recruitment and activation of Pak,” The EMBO Journal, vol. 20, no. 21, pp. 5919–5928, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. D. P. Hughes, M. B. Marron, and N. P. J. Brindle, “The antiinflammatory endothelial tyrosine kinase Tie2 interacts with a novel nuclear factor-κB inhibitor ABIN-2,” Circulation Research, vol. 92, no. 6, pp. 630–636, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Tadros, D. P. Hughes, B. J. Dunmore, and N. P. J. Brindle, “ABIN-2 protects endothelial cells from death and has a role in the antiapoptotic effect of angiopoietin-1,” Blood, vol. 102, no. 13, pp. 4407–4409, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. E. I. Korpelainen, M. Kärkkäinen, Y. Gunji, M. Vikkula, and K. Alitalo, “Endothelial receptor tyrosine kinases activate the STAT signaling pathway: mutant Tie-2 causing venous malformations signals a distinct STAT activation response,” Oncogene, vol. 18, no. 1, pp. 1–8, 1999. View at Publisher · View at Google Scholar · View at Scopus
  39. C. C. Weber, H. Cai, M. Ehrbar et al., “Effects of protein and gene transfer of the angiopoietin-1 fibrinogen-like receptor-binding domain on endothelial and vessel organization,” Journal of Biological Chemistry, vol. 280, no. 23, pp. 22445–22453, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Thomas, M. Felcht, K. Kruse et al., “Angiopoietin-2 stimulation of endothelial cells induces alphavbeta3 integrin internalization and degradation,” The Journal of Biological Chemistry, vol. 285, no. 31, pp. 23842–23849, 2010. View at Publisher · View at Google Scholar
  41. T. Li, Z. Liu, K. Jiang, and Q. Ruan, “Angiopoietin2 enhances doxorubin resistance in HepG2 cells by upregulating survivin and Ref-1 via MSK1 activation,” Cancer Letters, vol. 337, no. 2, pp. 276–284, 2013. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Etoh, H. Inoue, S. Tanaka, G. F. Barnard, S. Kitano, and M. Mori, “Angiopoietin-2 is related to tumor angiogenesis in gastric carcinoma: possible in vivo regulation via induction of proteases,” Cancer Research, vol. 61, no. 5, pp. 2145–2153, 2001. View at Google Scholar · View at Scopus
  43. J. Kosacka, M. Figiel, J. Engele, H. Hilbig, M. Majewski, and K. Spanel-Borowski, “Angiopoietin-1 promotes neurite outgrowth from dorsal root ganglion cells positive for Tie-2 receptor,” Cell and Tissue Research, vol. 320, no. 1, pp. 11–19, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. O.-H. Lee, J. Xu, J. Fueyo et al., “Expression of the receptor tyrosine kinase Tie2 in neoplastic glial cells is associated with integrin β1-dependent adhesion to the extracellular matrix,” Molecular Cancer Research, vol. 4, no. 12, pp. 915–926, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. L. M. DeBusk, Y. Chen, T. Nishishita, J. Chen, J. W. Thomas, and P. C. Lin, “Tie2 receptor tyrosine kinase, a major mediator of tumor necrosis factor α-induced angiogenesis in rheumatoid arthritis,” Arthritis and Rheumatism, vol. 48, no. 9, pp. 2461–2471, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. H. Kanazawa, S. Nomura, and K. Asai, “Roles of angiopoietin-1 and angiopoietin-2 on airway microvascular permeability in asthmatic patients,” Chest, vol. 131, no. 4, pp. 1035–1041, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. V. Nanjappa, R. Raju, B. Muthusamy et al., “A comprehensive curated reaction map of leptin signaling pathway,” Journal of Proteomics and Bioinformatics, vol. 4, no. 9, pp. 184–189, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Bhattacharjee, R. Raju, A. Radhakrishnan et al., “A bioinformatics resource for TWEAK-Fn14 signaling pathway,” Journal of Signal Transduction, vol. 2012, Article ID 376470, 10 pages, 2012. View at Publisher · View at Google Scholar
  49. K. Kandasamy, S. Keerthikumar, R. Raju et al., “PathBuilder—open source software for annotating and developing pathway resources,” Bioinformatics, vol. 25, no. 21, pp. 2860–2862, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. M. P. van Iersel, T. Kelder, A. R. Pico et al., “Presenting and exploring biological pathways with PathVisio,” BMC Bioinformatics, vol. 9, article 399, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. R. Raju, V. Nanjappa, L. Balakrishnan et al., “NetSlim: high-confidence curated signaling maps,” Database, vol. 2011, Article ID bar032, 2011. View at Publisher · View at Google Scholar