Table of Contents
Journal of Structures
Volume 2013, Article ID 658053, 5 pages
http://dx.doi.org/10.1155/2013/658053
Research Article

Study of Magnetic Vibration Absorber with Permanent Magnets along Vibrating Beam Structure

Mechanical Engineering Department, Genba Sopanrao Moze College of Engineering, Pune, Maharashtra 411045, India

Received 14 February 2013; Accepted 19 May 2013

Academic Editor: Mustafa Kemal Apalak

Copyright © 2013 F. B. Sayyad and N. D. Gadhave. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Igarasi, K. Shibukawa, S. Nakatani, and H. sekito, “Study on dynamic vibration absorber using permanent magnet,” Bulletin of the Faculty of Engineering, Hokkaido University, vol. 156, pp. 29–28, 1991. View at Google Scholar
  2. K. Nagaya and M. Sugiura, “Method for obtaining a linear spring for a permanent magnet levitation system using electromagnetic control,” IEEE Transactions on Magnetics, vol. 31, no. 3, pp. 2332–2338, 1995. View at Google Scholar · View at Scopus
  3. R. J. Nagem, S. I. Madanshetty, and G. Medhi, “An electromechanical vibration absorber,” Journal of Sound and Vibration, vol. 200, no. 4, pp. 551–556, 1997. View at Google Scholar · View at Scopus
  4. K. Nagaya, A. Kurusu, S. Ikai, and Y. Shitani, “Vibration control of a structure by using a tunable absorber and an optimal vibration absorber under auto-tuning control,” Journal of Sound and Vibration, vol. 228, no. 4, pp. 773–792, 1999. View at Google Scholar · View at Scopus
  5. K. Li and W. R. Hu, “Numerical simulation of magnetic field design for damping thermocapillary convection in a floating half-zone,” Journal of Crystal Growth, vol. 222, no. 3, pp. 677–684, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. V. Balamurugan and S. Narayanan, “Finite element formulation and active vibration control study on beams using smart constrained layer damping (SCLD) treatment,” Journal of Sound and Vibration, vol. 249, no. 2, pp. 227–250, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. S. G. Hill and S. D. Snyder, “Design of an adaptive vibration absorber to reduce electrical transformer structural vibration,” Journal of Vibration and Acoustics, Transactions of the ASME, vol. 124, no. 4, pp. 606–611, 2002. View at Google Scholar · View at Scopus
  8. S. Y. Bhave and R. Gupta, “Design and development of active dynamic vibration absorber,” Journal of the Institution of Engineers (India): Mechanical Engineering Division, vol. 84, no. 2, pp. 51–54, 2004. View at Google Scholar · View at Scopus
  9. S. M. Hasmi and M. F. Golnaarghi, “Active control of wind induced building vibration using a linear coupling strategy,” Asian Journal of Civil Engineering, vol. 4, pp. 35–53, 2003. View at Google Scholar
  10. J. Liu, K. Liu, and L. Liao, “Comparison of two auto-tuning methods for a variable stiffness vibration absorber,” Transactions of the Canadian Society for Mechanical Engineering, vol. 29, no. 1, pp. 81–96, 2005. View at Google Scholar · View at Scopus
  11. Y. Khazanov, “Dynamic vibration absorber-application with variable speed machines,” Pumps and System, pp. 114–119, 2007.
  12. H.-X. Deng and X.-L. Gong, “Application of magnetorheological elastomer to vibration absorber,” Communications in Nonlinear Science and Numerical Simulation, vol. 13, no. 9, pp. 1938–1947, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Moradi, F. Bakhtiari-Nejad, and M. R. Movahhedy, “Tuneable vibration absorber design to suppress vibrations: an application in boring manufacturing process,” Journal of Sound and Vibration, vol. 318, no. 1-2, pp. 93–108, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. M. Huang and S. C. Hung, “Analytical study of an active piezoelectric absorber on vibration attenuation of a plate,” Journal of Sound and Vibration, vol. 330, no. 3, pp. 361–373, 2011. View at Publisher · View at Google Scholar · View at Scopus