Table of Contents
Journal of Structures
Volume 2013, Article ID 679859, 14 pages
http://dx.doi.org/10.1155/2013/679859
Research Article

Ultimate Seismic Resistance Capacity for Long Span Lattice Structures under Vertical Ground Motions

Osaka City University, Sugimoto-cho 3-3-138, Sumiyoshi-ku, Osaka 5588585, Japan

Received 26 March 2013; Accepted 15 August 2013

Academic Editor: Aurélio Araújo

Copyright © 2013 Yoshiya Taniguchi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Kato, K. Ishikawa, and Y. Yokoo, “Earthquake resistant capacity of long span trusses structures a study on trsussed beam due to vertical earthquake motions,” Journal of Structural and Construction Engineering, no. 360, pp. 64–74, 1986. View at Google Scholar
  2. K. Ishikawa and S. Kato, “Earthquake resistant capacity and collapse mechanism of dynamic buckling on double layer latticed domes under vertical motions,” in Proceedings of the SEIKEN-IASS Symposium on Nonlinear Analysis and Design for Shell and Spatial Structures, pp. 569–576, 1993.
  3. M. Murata, “Dynamic characteristics of single layer reticular domes subjected to vertical and horizontal earthquake motions,” Journal of Structural and Construction Engineering, no. 571, pp. 103–110, 2003. View at Google Scholar
  4. Y. Taniguchi, M. Kurano, F. Zhang, and T. Saka, “Limit state load and dynamic collapse estimation for double-layer cylindrical latticed roofs,” in Proceedings of the IASS International Symposium New Olympics New Shell and Spatial Structures, p. DR13, 2006, Extended Abstracts and CD-ROM of IASS-APCS.
  5. T. Kumagai, Y. Taniguchi, T. Ogawa, and M. Masuyama, “Static and dynamic buckling behavior of double-layer latticed domes with various mesh patterns,” in Proceedings of the IASS International Symposium New Olympics New Shell and Spatial Structures, p. BK10, 2006, Extended Abstracts and CD-ROM of IASS-APCS.
  6. G. W. Housner, “Limit design of structures to resist earthquakes,” in Proceedings of the World Conference on Earthquake Engineering, pp. 5-1–5-13, Berkley, Calif, USA, 1956.
  7. B. Kato and H. Akiyama, “Energy input and damages in structures subjected to sever earthquakes,” Transactions of Architectural Institute of Japan, no. 235, pp. 9–18, 1975. View at Google Scholar
  8. M. Tada, M. Hayashi, and T. Yoneyama, “An improvement of seismic capacity of double-layer space trusses using force limiting devices,” in Proceedings of the IASS International Symposium on Spatial Structures: Heritage, Present and Future, vol. 2, pp. 1085–1092, Milan, Italy, 1995.
  9. F. Qiao, N. Hagiwara, and T. Matsui, “On the relation between absorbed energy and dynamic collapse of a single-layer shallow latticed domes,” Journal of Structural and Construction Engineering, no. 531, pp. 117–124, 2000. View at Google Scholar
  10. Y. Taniguchi, “Seismic motion level of dynamic collapse or limit state deformation for lattice arch and cylindrical roof,” in Proceedings of the Structural Engineers World Congress, p. 176, Como, Italy, 2011, Abstract Book and CD-ROM.
  11. M. Murata, SPACE, Meijo University, Nagoya, Japan, http://wwwra.meijo-u.ac.jp/labs/ra007/space/index.htm.