Table of Contents
Journal of Structures
Volume 2014, Article ID 216549, 17 pages
http://dx.doi.org/10.1155/2014/216549
Research Article

Analytical Modeling of Masonry Infilled RC Frames and Verification with Experimental Data

Department of Civil Engineering, University of Patras, Rio, 26500 Patras, Greece

Received 30 September 2013; Accepted 5 February 2014; Published 22 April 2014

Academic Editor: Zhongwei Guan

Copyright © 2014 S. Skafida et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. J. Crisafulli and A. J. Carr, “Proposed macro-model for the analysis of infilled frame structures,” Bulletin of the New Zealand Society for Earthquake Engineering, vol. 40, no. 2, pp. 69–77, 2007. View at Google Scholar · View at Scopus
  2. H. R. Lotfi, Finite element analysis of fracure of concrete and masonry structures, [Ph.D. dissertation], University of Colorado, Boulder, Colorado, 1992.
  3. P. B. Lourenco, Computational strategies for masonry structures, [Ph.D. dissertation], Delft University of Technology, Delft, The Netherlands, 1996.
  4. M. M. Attard, A. Nappi, and F. Tin-Loi, “Modeling fracture in masonry,” Journal of Structural Engineering, vol. 133, no. 10, pp. 1385–1392, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. A. B. Mehrabi and P. B. Shing, “Finite element modeling of masonry-infilled RC frames,” Journal of Structural Engineering, vol. 123, no. 5, pp. 604–613, 1997. View at Google Scholar · View at Scopus
  6. Y.-J. Chiou, J.-C. Tzeng, and Y.-W. Liou, “Experimental and analytical study of masonry infilled frames,” Journal of Structural Engineering, vol. 125, no. 10, pp. 1109–1117, 1999. View at Google Scholar · View at Scopus
  7. A. Stavridis and P. B. Shing, “Finite-element modeling of nonlinear behavior of masonry-infilled RC frames,” Journal of Structural Engineering, vol. 136, no. 3, pp. 285–296, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. S. V. Polyakov, “On the interaction between masonry filler walls and enclosing frame when loaded in the plane of the wall,” in Translation in Earthquake Engineering, pp. 36–42, Earthquake Engineering Research Institute (EERI), San Francisco, Calif, USA, 1960. View at Google Scholar
  9. M. Holmes, “Steel frames with brickwork and concrete infilling,” ICE Proceedings, vol. 19, no. 4, pp. 473–478, 1961. View at Publisher · View at Google Scholar
  10. B. S. Smith, “Lateral stiffness of infilled frames,” Journal of Structural Engineering, vol. 88, no. 6, pp. 182–199, 1962. View at Google Scholar
  11. R. J. Mainstone, “On the stiffnesses and strengths of infilled frames,” ICE Proceedings, vol. 49, no. 2, p. 230, 1971. View at Publisher · View at Google Scholar
  12. C. A. Syrmakezis and V. Y. Vratsanou, “Influence of infill walls to RC frames response,” in Proceedings of the 8th European Conference on Earthquake Engineering of the European Association for Earthquake Engineering (EAEE), pp. 47–53, Instabul, Turkey, 1986.
  13. C. Z. Chrysostomou, P. Gergely, and J. F. Abel, “A six-strut model for nonlinear dynamic analysis of steel infilled frames,” International Journal of Structural Stability and Dynamics, vol. 2, no. 3, pp. 335–353, 2002. View at Publisher · View at Google Scholar
  14. W. W. El-Dakhakhni, M. Elgaaly, and A. A. Hamid, “Three-strut model for concrete masonry-infilled steel frames,” Journal of Structural Engineering, vol. 129, no. 2, pp. 177–185, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. M. N. Fardis and T. B. Panagiotakos, “Seismic design and response of bare and masonry-infilled reinforced concrete buildings. Part II: infilled structures,” Journal of Earthquake Engineering, vol. 1, no. 3, pp. 475–503, 1997. View at Google Scholar · View at Scopus
  16. F. J. Crisafulli, Seismic behavior of reinforced concrete structures with masonry infills, [Ph.D. dissertation], Department of Civil Engineering, University of Cantebury, Cantebury, New Zealand, 1997.
  17. S. Mazzoni, F. McKenna, M. H. Scott, and G. L. Fenves, Open System for Earthquake Engineering Simulation (OpenSees), User Command-Language Manual, Pacific Earthquake Engineering Research Center, University of California, Berkeley, Calif, USA, 2006, http://opensees.berkeley.edu/OpenSees/manuals/.
  18. J. B. Mander, M. J. N. Priestley, and R. Park, “Theoretical stress-strain model for confined concrete,” Journal of Structural Engineering, vol. 114, no. 8, pp. 1804–1826, 1988. View at Google Scholar · View at Scopus
  19. E. Smyrou, C. Blandon, S. Antoniou, R. Pinho, and F. Crisafulli, “Implementation and verification of a masonry panel model for nonlinear dynamic analysis of infilled RC frames,” Bulletin of Earthquake Engineering, vol. 9, no. 5, pp. 1519–1534, 2011. View at Publisher · View at Google Scholar
  20. D. G. Lignos and H. Krawinkler, “Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading,” Journal of Structural Engineering, vol. 137, no. 11, pp. 1291–1302, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. D. G. Lignos and H. Krawinkler, “Sidesway collapse of deteriorating structural systems under seismic excitations,” Tech. Rep. TB177, The John A. Blume Earthquake Engineering Research Center, Stanford University, Stanford, Calif, USA, 2012. View at Google Scholar
  22. M. N. Fardis, “Experimental and numerical investigations on the seismic response of RC frames and recommendations for Code Provisions,” Tech. Rep. 6, ECOEST PREEC8, 1997. View at Google Scholar
  23. S. H. Bertoldi, L. D. Decanini, and C. Gavarini, “Telai tamponati soggetti ad azione sismica, un modelo semplificato: confronto sperimentale e numerico,” in Atti del 6 Convegno Nazionale ANIDIS, Perugia, Italy, 1993, (Italian).
  24. T. Pauley and M. J. N. Priestley, Seismic Design of Reinforced Concrete and Masonry Buildings, Wiley, New York, NY, USA, 1992.
  25. L. D. Decanini and G. E. Fantin, “Modelos simplificados de la mamponesteria incluida en porticos. Caracteristicas de rigidez y resistencia lateral en astado limite,” in Jornadas Argentinas de Ingenieria Estructural III, vol. 2, pp. 817–8605, Asociacion de Ingenieros Estructurales, Buenos Aires, Argentina, (Spanish).
  26. F. M. G. Pires and E. C. Carvalho, “The behaviour of infilled reinforced concrete frames under horizontal cyclic loading,” in Proceedings of the 10th World Conference on Earthquake Engineering, vol. 6, pp. 3419–33422, Balkema, Rotterdam, 1992.
  27. F. M. G. Pires, Influencia das paredes de alvenaria no comportamento de estruturas reticuladas de betao armado sujeitas a accoes horizontais [Ph.D. dissertation], National Laboratory in Civil Engineering, Lisbon, Portugal, 1990, (Portugese).
  28. M. Kyriakides, Numerical analysis of unreinforced masonry infills in non-ductile reinforced concrete frames using Engineered Cementitious Composites, [Ph.D. dissertation], Stanford University, Stanford, Calif, USA, 2011.
  29. I. Koutromanos, Numerical analysis of masonry—infilled RC frames subjected to seismic loads and experimental evaluation of retrofit techniques, [Ph.D. dissertation], University of California, San Diego, Calif, USA, 2011.
  30. L. Koutas, S. N. Bousias, and T. C. Triantafillou, “In-plane behavior of a three-strorey masonry infilled RC frame,” in Proceedings of the 4th International fib Congress, Mumbai, India, February 2014.