Table of Contents Author Guidelines Submit a Manuscript
Journal of Toxicology
Volume 2011, Article ID 628151, 6 pages
http://dx.doi.org/10.1155/2011/628151
Research Article

Blood Harmane Concentrations in 497 Individuals Relative to Coffee, Cigarettes, and Food Consumption on the Morning of Testing

1GH Sergievsky Center, College of Physicians and Surgeons, Columbia University, Unit 198, Neurological Institute, 710 West 168th Street, New York, NY 10032-2699, USA
2Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY 10027-6900, USA
3Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032-3727, USA
4Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
5School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA

Received 23 November 2010; Revised 11 February 2011; Accepted 16 February 2011

Academic Editor: Margaret James

Copyright © 2011 Elan D. Louis et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Kuhn, T. Muller, H. Grosse, and H. Rommelspacher, “Plasma harman and norharman in Parkinson's disease,” Journal of Neural Transmission, Supplement, no. 46, pp. 291–295, 1995. View at Google Scholar
  2. E. D. Louis, W. Jiang, K. M. Pellegrino et al., “Elevated blood harmane (1-methyl-9H-pyrido[3,4-b]indole) concentrations in essential tremor,” NeuroToxicology, vol. 29, no. 2, pp. 294–300, 2008. View at Publisher · View at Google Scholar · View at PubMed
  3. W. Pfau and K. Skog, “Exposure to β-carbolines norharman and harman,” Journal of Chromatography B, vol. 802, no. 1, pp. 115–126, 2004. View at Publisher · View at Google Scholar · View at PubMed
  4. T. Herraiz, “Identification and occurence of the bioactive β-carbolines norharman and harman in coffee brews,” Food Additives and Contaminants, vol. 19, no. 8, pp. 748–754, 2002. View at Publisher · View at Google Scholar · View at PubMed
  5. T. Herraiz, “Relative exposure to β-carbolines norharman and harman from foods and tobacco smoke,” Food Additives and Contaminants, vol. 21, no. 11, pp. 1041–1050, 2004. View at Publisher · View at Google Scholar · View at PubMed
  6. T. Herraiz and C. Chaparro, “Human monoamine oxidase enzyme inhibition by coffee and β-carbolines norharman and harman isolated from coffee,” Life Sciences, vol. 78, no. 8, pp. 795–802, 2006. View at Publisher · View at Google Scholar · View at PubMed
  7. Y. Totsuka, H. Ushiyama, J. Ishihara et al., “Quantification of the co-mutagenic β-carbolines, norharman and harman, in cigarette smoke condensates and cooked foods,” Cancer Letters, vol. 143, no. 2, pp. 139–143, 1999. View at Publisher · View at Google Scholar
  8. U. Breyer-Pfaff, G. Wiatr, I. Stevens, H. J. Gaertner, G. Mundle, and K. Mann, “Elevated norharman plasma levels in alcoholic patients and controls resulting from tobacco smoking,” Life Sciences, vol. 58, no. 17, pp. 1425–1432, 1996. View at Publisher · View at Google Scholar
  9. Y. Guan, E. D. Louis, and W. Zheng, “Toxicokinetics of tremorogenic natural products, harmane and harmine, in male sprague-dawley rats,” Journal of Toxicology and Environmental Health Part A, vol. 64, no. 8, pp. 645–660, 2001. View at Publisher · View at Google Scholar
  10. E. D. Louis, W. Zheng, E. C. Jurewicz et al., “Elevation of blood β-carboline alkaloids in essential tremor,” Neurology, vol. 59, no. 12, pp. 1940–1944, 2002. View at Google Scholar
  11. E. D. Louis, B. Ford, H. Lee, and H. Andrews, “Does a screening questionnaire for essential tremor agree with the physician's examination?” Neurology, vol. 50, no. 5, pp. 1351–1357, 1998. View at Google Scholar
  12. E. D. Louis, R. Ottman, B. Ford et al., “The Washington Heights-Inwood Genetic Study of Essential Tremor: methodologic issues in essential-tremor research,” Neuroepidemiology, vol. 16, no. 3, pp. 124–133, 1997. View at Google Scholar
  13. B. S. Linn, M. W. Linn, and L. Gurel, “Cumulative illness rating scale,” Journal of the American Geriatrics Society, vol. 16, no. 5, pp. 622–626, 1968. View at Google Scholar
  14. W. Zheng, S. Wang, L. F. Barnes, Y. Guan, and E. D. Louis, “Determination of harmane and harmine in human blood using reversed-phased high-performance liquid chromatography and fluorescence detection,” Analytical Biochemistry, vol. 279, no. 2, pp. 125–129, 2000. View at Publisher · View at Google Scholar · View at PubMed
  15. R. Spijkerman, R. van den Eijnden, D. van de Mheen, I. Bongers, and D. Fekkes, “The impact of smoking and drinking on plasma levels of norharman,” European Neuropsychopharmacology, vol. 12, no. 1, pp. 61–71, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Kiefer, A. Krödel, H. Jahn, K. Wolf, and A. Barocka, “Harman and norharman plasma levels in weaned alcoholics: correlations with depression and tobacco smoking,” Addiction Biology, vol. 5, no. 4, pp. 437–441, 2000. View at Google Scholar
  17. H. Rommelspacher, L. G. Schmidt, and T. May, “Plasma norharman (β-carboline) levels are elevated in chronic alcoholics,” Alcoholism: Clinical and Experimental Research, vol. 15, no. 3, pp. 553–559, 1991. View at Google Scholar