Table of Contents Author Guidelines Submit a Manuscript
Journal of Toxicology
Volume 2011, Article ID 721987, 9 pages
Review Article

Biochemical Factors Modulating Cellular Neurotoxicity of Methylmercury

1Department of Neuroscience, Norwegian University of Science and Technology, 7489 Trondheim, Norway
2Departments of Pediatrics and Pharmacology and The Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, B-3307 Medical Center North, 1162 21st Avenue, Nashville, TN 37232-2495, USA
3Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 3, 7489 Trondheim, Norway

Received 30 April 2011; Revised 28 June 2011; Accepted 13 July 2011

Academic Editor: Shelley Bhattacharya

Copyright © 2011 Parvinder Kaur et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Methylmercury (MeHg), an environmental toxicant primarily found in fish and seafood, poses a dilemma to both consumers and regulatory authorities, given the nutritional benefits of fish consumption versus the possible adverse neurological damage. Several studies have shown that MeHg toxicity is influenced by a number of biochemical factors, such as glutathione (GSH), fatty acids, vitamins, and essential elements, but the cellular mechanisms underlying these complex interactions have not yet been fully elucidated. The objective of this paper is to outline the cellular response to dietary nutrients, as well as to describe the neurotoxic exposures to MeHg. In order to determine the cellular mechanism(s) of toxicity, the effect of pretreatment with biochemical factors (e.g., N-acetyl cysteine, (NAC); diethyl maleate, (DEM); docosahexaenoic acid, (DHA); selenomethionine, SeM; Trolox) and MeHg treatment on intercellular antioxidant status, MeHg content, and other endpoints was evaluated. This paper emphasizes that the protection against oxidative stress offered by these biochemical factors is among one of the major mechanisms responsible for conferring neuroprotection. It is therefore critical to ascertain the cellular mechanisms associated with various dietary nutrients as well as to determine the potential effects of neurotoxic exposures for accurately assessing the risks and benefits associated with fish consumption.