Table of Contents Author Guidelines Submit a Manuscript
Journal of Toxicology
Volume 2012, Article ID 103608, 9 pages
http://dx.doi.org/10.1155/2012/103608
Review Article

Potassium Channels Blockers from the Venom of Androctonus mauretanicus mauretanicus

Aix-Marseille University, CNRS, UMR 7286, CRN2M, Faculté de Médecine secteur Nord, CS80011, Boulevard Pierre Dramard, 13344 Marseille Cedex 15, France

Received 2 February 2012; Accepted 16 March 2012

Academic Editor: Maria Elena de Lima

Copyright © 2012 Marie-France Martin-Eauclaire and Pierre E. Bougis. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. F. Martin-Eauclaire and F. Couraud, “Scorpion neurotoxins: effects and mechanisms,” in Handbook Neurotoxicology, L. W. Chang and R. S. Dyer, Eds., pp. 683–716, Marcel Dekker, New York, NY, USA, 1995. View at Google Scholar
  2. L. D. Possani, E. Merino, M. Corona, F. Bolivar, and B. Becerril, “Peptides and genes coding for scorpion toxins that affect ion-channels,” Biochimie, vol. 82, no. 9-10, pp. 861–868, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. R. C. Rodríguez De La Vega and L. D. Possani, “Overview of scorpion toxins specific for Na+ channels and related peptides: biodiversity, structure-function relationships and evolution,” Toxicon, vol. 46, no. 8, pp. 831–844, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Cestèle and W. A. Catterall, “Molecular mechanisms of neurotoxin action on voltage-gated sodium channels,” Biochimie, vol. 82, no. 9-10, pp. 883–892, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Bosmans, M. F. Martin-Eauclaire, and K. J. Swartz, “Deconstructing voltage sensor function and pharmacology in sodium channels,” Nature, vol. 456, no. 7219, pp. 202–208, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Bosmans, M. Puopolo, M. F. Martin-Eauclaire, B. P. Bean, and K. J. Swartz, “Functional properties and toxin pharmacology of a dorsal root ganglion sodium channel viewed through its voltage sensors,” Journal of General Physiology, vol. 138, no. 1, pp. 59–72, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Tytgat, K. G. Chandy, M. L. Garcia et al., “A unified nomenclature for short-chain peptides isolated from scorpion venoms: α-KTx molecular subfamilies,” Trends in Pharmacological Sciences, vol. 20, no. 11, pp. 444–447, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Bontems, C. Roumestand, B. Gilquin, A. Ménez, and F. Toma, “Refined structure of charybdotoxin: common motifs in scorpion toxins and insect defensins,” Science, vol. 254, no. 5037, pp. 1521–1523, 1991. View at Google Scholar · View at Scopus
  9. O. Pongs, Regulation of Excitability by Potassium Channels. Inhibitory Regulation of Excitatory Neurotransmission, vol. 44 of Results and Problems in Cell Differentiation, Springer, Heidelberg, Germany, 2007.
  10. G. A. Gutman, K. G. Chandy, S. Grissmer et al., “International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels,” Pharmacological Reviews, vol. 57, no. 4, pp. 473–508, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. S. B. Long, E. B. Campbell, and R. MacKinnon, “Crystal structure of a mammalian voltage-dependent Shaker family K+ channel,” Science, vol. 309, no. 5736, pp. 897–903, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. C. S. Park and C. Miller, “Interaction of charybdotoxin with permeant ions inside the pore of a k+ channel,” Neuron, vol. 9, no. 2, pp. 307–313, 1992. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Lange, K. Giller, S. Hornig et al., “Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR,” Nature, vol. 440, no. 7086, pp. 959–962, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. K. N. Srinivasan, V. Sivaraja, I. Huys et al., “kappa-Hefutoxin1, a novel toxin from the scorpion Heterometrus fulvipes with unique structure and function. Importance of the functional diad in potassium channel selectivity,” Journal of Biological Chemistry, vol. 277, no. 33, pp. 30040–30047, 2002. View at Google Scholar · View at Scopus
  15. E. Diego-García, Y. Abdel-Mottaleb, E. F. Schwartz, R. C. R. De La Vega, J. Tytgat, and L. D. Possani, “Cytolytic and k+ channel blocking activities of β-KTx and scorpine-like peptides purified from scorpion venoms,” Cellular and Molecular Life Sciences, vol. 65, no. 1, pp. 187–200, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Corona, G. B. Gurrola, E. Merino et al., “A large number of novel Ergtoxin-like genes and ERG k+-channels blocking peptides from scorpions of the genus Centruroides,” FEBS Letters, vol. 532, no. 1-2, pp. 121–126, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Oukkache, M. F. Martin-Eauclaire, F. Chgoury et al., “Identification des paramètres influençant la prise en charge de l'envenimation scorpionique au Maroc,” in Toxines et Cancer, Rencontres en Toxinologie, pp. 295–300, LAVOISIER, 2006. View at Google Scholar
  18. J. P. Rosso and H. Rochat, “Characterization of ten proteins from the venom of the Moroccan scorpion Androctonus mauretanicus mauretanicus, six of which are toxic to the mouse,” Toxicon, vol. 23, no. 1, pp. 113–125, 1985. View at Google Scholar · View at Scopus
  19. H. Zerrouk, P. E. Bougis, B. Ceard, A. Benslimane, and M. F. Martin-Eauclaire, “Analysis by high-performance liquid chromatography of Androctonus mauretanicus mauretanicus (black scorpion) venom,” Toxicon, vol. 29, no. 8, pp. 951–960, 1991. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Crest, G. Jacquet, M. Gola et al., “Kaliotoxin, a novel peptidyl inhibitor of neuronal BK-type Ca2+-activated k+ channels characterized from Androctonus mauretanicus mauretanicus venom,” Journal of Biological Chemistry, vol. 267, no. 3, pp. 1640–1647, 1992. View at Google Scholar · View at Scopus
  21. J. M. Sabatier, H. Zerrouk, H. Darbon et al., “P05, a new leiurotoxin I-like scorpion toxin: synthesis and structure-activity relationships of the α-amidated analog, a ligand of Ca2+-activated k+ channels with increased affinity,” Biochemistry, vol. 32, no. 11, pp. 2763–2770, 1993. View at Google Scholar · View at Scopus
  22. H. Vacher, M. Alami, M. Crest, L. D. Possani, P. E. Bougis, and M. F. Martin-Eauclaire, “Expanding the scorpion toxin α-KTX 15 family with AmmTX3 from Androctonus mauretanicus,” European Journal of Biochemistry, vol. 269, no. 24, pp. 6037–6041, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Oukkache, J. P. Rosso, M. Alami et al., “New analysis of the toxic compounds from the Androctonus mauretanicus mauretanicus scorpion venom,” Toxicon, vol. 51, no. 5, pp. 835–852, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Aiyar, J. M. Withka, J. P. Rizzi et al., “Topology of the pore-region of a k+ channel revealed by the NMR-derived structures of scorpion toxins,” Neuron, vol. 15, no. 5, pp. 1169–1181, 1995. View at Publisher · View at Google Scholar · View at Scopus
  25. J. C. Fontecilla-Camps, C. Habersetzer-Rochat, and H. Rochat, “Orthorhombic crystals and three-dimensional structure of the potent toxin II from the scorpion Androctonus australis Hector,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 20, pp. 7443–7447, 1988. View at Google Scholar · View at Scopus
  26. H. Zerrouk, F. Laraba-Djebari, V. Fremont et al., “Characterization of PO15 a new peptide ligand of the apamin-sensitive Ca2+ activated k+ channel,” International Journal of Peptide and Protein Research, vol. 48, no. 6, pp. 514–521, 1996. View at Google Scholar · View at Scopus
  27. Y. Abdel-Mottaleb, E. Clynen, A. Jalali et al., “The first potassium channel toxin from the venom of the Iranian scorpion Odonthobuthus doriae,” FEBS Letters, vol. 580, no. 26, pp. 6254–6258, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Darbon, E. Blanc, and J. M. Sabatier, “Three-dimensional structure of scorpion toxins: toward a new model of interaction with potassium channels,” Perspectives in Drug Discovery and Design, vol. 16, pp. 41–60, 1999. View at Google Scholar
  29. P. Auguste, M. Hugues, B. Grave et al., “Leiurotoxin I (scyllatoxin), a peptide ligand for Ca2+-activated k+ channels. Chemical synthesis, radiolabeling, and receptor characterization,” Journal of Biological Chemistry, vol. 265, no. 8, pp. 4753–4759, 1990. View at Google Scholar · View at Scopus
  30. G. G. Chicchi, G. Gimenez-Callego, E. Ber, M. L. Garcia, R. Winquist, and M. A. Cascieri, “Purification and characterization of a unique, potent inhibitor of apamin binding from Leiurus quinquestriatus hebraeus venom,” Journal of Biological Chemistry, vol. 263, no. 21, pp. 10192–10197, 1988. View at Google Scholar · View at Scopus
  31. C. Labbe-Jullie, C. Granier, F. Albericio et al., “Binding and toxicity of apamin. Characterization of the active site,” European Journal of Biochemistry, vol. 196, no. 3, pp. 639–645, 1991. View at Google Scholar · View at Scopus
  32. C. Devaux, M. Knibiehler, M. L. Defendini et al., “Recombinant and chemical derivatives of apamin. Implication of post-transcriptional C-terminal amidation of apamin in biological activity,” European Journal of Biochemistry, vol. 231, no. 3, pp. 544–550, 1995. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Cui, J. Shen, J. M. Briggs et al., “Brownian dynamics simulations of the recognition of the scorpion toxin P05 with the small-conductance calcium-activated potassium channels,” Journal of Molecular Biology, vol. 318, no. 2, pp. 417–428, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Brugnara, C. C. Armsby, L. De Franceschi, M. Crest, M. F. Martin Euclaire, and S. L. Alper, “Ca2+-activated k+ channels of human and rabbit erythrocytes display distinctive patterns of inhibition by venom peptide toxins,” Journal of Membrane Biology, vol. 147, no. 1, pp. 71–82, 1995. View at Google Scholar · View at Scopus
  35. E. Honore, E. Guillemare, F. Lesage, J. Barhanin, and M. Lazdunski, “Injection of a k+ channel (Kv1.3) cRNA in fertilized eggs leads to functional expression in cultured myotomal muscle cells from Xenopus embryos,” FEBS Letters, vol. 348, no. 3, pp. 259–262, 1994. View at Publisher · View at Google Scholar · View at Scopus
  36. M. D. Cahalan and K. G. Chandy, “The functional network of ion channels in T lymphocytes,” Immunological Reviews, vol. 231, no. 1, pp. 59–87, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Beeton, J. Barbaria, P. Giraud et al., “Selective blocking of voltage-gated k+ channels improves experimental autoimmune encephalomyelitis and inhibits T cell activation,” Journal of Immunology, vol. 166, no. 2, pp. 936–944, 2001. View at Google Scholar · View at Scopus
  38. P. Valverde, T. Kawai, and M. A. Taubman, “Selective blockade of voltage-gated potassium channels reduces inflammatory bone resorption in experimental periodontal disease,” Journal of Bone and Mineral Research, vol. 19, no. 1, pp. 155–164, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Mourre, M. N. Chernova, M. F. Martin-Eauclaire et al., “Distribution in rat brain of binding sites of kaliotoxin, a blocker of Kv1.1 and Kv1.3 α-subunits,” Journal of Pharmacology and Experimental Therapeutics, vol. 291, no. 3, pp. 943–952, 1999. View at Google Scholar · View at Scopus
  40. S. Kourrich, C. Mourre, and B. Soumireu-Mourat, “Kaliotoxin, a Kv1.1 and Kv1.3 channel blocker, improves associative learning in rats,” Behavioural Brain Research, vol. 120, no. 1, pp. 35–46, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Romi, M. Crest, M. Gola et al., “Synthesis and characterization of kaliotoxin. Is the 26-32 sequence essential for potassium channel recognition?” Journal of Biological Chemistry, vol. 268, no. 35, pp. 26302–26309, 1993. View at Google Scholar · View at Scopus
  42. G. M. Lipkind and H. A. Fozzard, “A model of scorpion toxin binding to voltage-gated k+ channels,” Journal of Membrane Biology, vol. 158, no. 3, pp. 187–196, 1997. View at Publisher · View at Google Scholar · View at Scopus
  43. C. Ader, R. Schneider, S. Hornig et al., “A structural link between inactivation and block of a k+ channel,” Nature Structural and Molecular Biology, vol. 15, no. 6, pp. 605–612, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Ader, O. Pongs, S. Becker, and M. Baldus, “Protein dynamics detected in a membrane-embedded potassium channel using two-dimensional solid-state NMR spectroscopy,” Biochimica et Biophysica Acta, vol. 1798, no. 2, pp. 286–290, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. U. Zachariae, R. Schneider, P. Velisetty et al., “The molecular mechanism of toxin-induced conformational changes in a potassium channel: relation to C-type inactivation,” Structure, vol. 16, no. 5, pp. 747–754, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Pisciotta, F. I. Coronas, C. Bloch, G. Prestipino, and L. D. Possani, “Fast k+ currents from cerebellum granular cells are completely blocked by a peptide purified from Androctonus australis Garzoni scorpion venom,” Biochimica et Biophysica Acta, vol. 1468, no. 1-2, pp. 203–212, 2000. View at Publisher · View at Google Scholar · View at Scopus
  47. H. Vacher, R. Romi-Lebrun, C. Mourre et al., “A new class of scorpion toxin binding sites related to an A-type k+ channel: pharmacological characterization and localization in rat brain,” FEBS Letters, vol. 501, no. 1-3, pp. 31–36, 2001. View at Google Scholar · View at Scopus
  48. C. Legros, P. E. Bougis, and M. F. Martin-Eauclaire, “Characterisation of the genes encoding Aa1 isoforms from the scorpion Androctonus australis,” Toxicon, vol. 41, no. 1, pp. 115–119, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. T. Chen, B. Walker, M. Zhou, and C. Shaw, “Molecular cloning of a novel putative potassium channel-blocking neurotoxin from the venom of the North African scorpion, Androctonus amoreuxi,” Peptides, vol. 26, no. 5, pp. 731–736, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. M. C. Sanguinetti, J. H. Johnson, L. G. Hammerland et al., “Heteropodatoxins: peptides isolated from spider venom that block Kv4.2 potassium channels,” Molecular Pharmacology, vol. 51, no. 3, pp. 491–498, 1997. View at Google Scholar · View at Scopus
  51. W. A. Coetzee, Y. Amarillo, J. Chiu et al., “Molecular diversity of k+ channels,” Annals of the New York Academy of Sciences, vol. 868, pp. 233–285, 1999. View at Publisher · View at Google Scholar · View at Scopus
  52. H. Vacher and J. S. Trimmer, “Diverse roles for auxiliary subunits in phosphorylation-dependent regulation of mammalian brain voltage-gated potassium channels,” Pflugers Archiv European Journal of Physiology, vol. 642, no. 5, pp. 631–643, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. H. Vacher, S. Diochot, P. E. Bougis, M. F. Martin-Eauclaire, and C. Mourre, “Kv4 channels sensitive to BmTX3 in rat nervous system: autoradiographic analysis of their distribution during brain ontogenesis,” European Journal of Neuroscience, vol. 24, no. 5, pp. 1325–1340, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. Abdel-Mottaleb, G. Corzo, M. F. Martin-Eauclaire et al., “A common "hot spot" confers hERG blockade activity to α-scorpion toxins affecting k+ channels,” Biochemical Pharmacology, vol. 76, no. 6, pp. 805–815, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Amendola, A. Woodhouse, M. F. Martin-Eauclaire, and J. M. Goaillard, “Ca2+/cAMP-Sensitive co-variation of IA and IH voltage dependences tune rebound firing in dopaminergic neurons,” The Journal of Neuroscience, vol. 32, no. 6, pp. 2166–2181, 2012. View at Google Scholar
  56. L. R. Phillips, M. Milescu, Y. Li-Smerin, J. A. Mindell, J. I. Kim, and K. J. Swartz, “Voltage-sensor activation with a tarantula toxin as cargo,” Nature, vol. 436, no. 7052, pp. 857–860, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. H. Vacher, R. Romi-Lebrun, M. Crest et al., “Functional consequences of deleting the two C-terminal residues of the scorpion toxin BmTX3,” Biochimica et Biophysica Acta, vol. 1646, no. 1-2, pp. 152–156, 2003. View at Publisher · View at Google Scholar · View at Scopus
  58. G. N. Tseng, K. D. Sonawane, Y. V. Korolkova et al., “Probing the outer mouth structure of the hERG channel with peptide toxin footprinting and molecular modeling,” Biophysical Journal, vol. 92, no. 10, pp. 3524–3540, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. R. C. Rodríguez De La Vega, E. Merino, B. Becerril, and L. D. Possani, “Novel interactions between k+ channels and scorpion toxins,” Trends in Pharmacological Sciences, vol. 24, no. 5, pp. 222–227, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. I. Huys, C. Q. Xu, C. Z. Wang et al., “BmTx3, a scorpion toxin with two putative functional faces separately active on A-type k+ and HERG currents,” Biochemical Journal, vol. 378, no. 3, pp. 745–752, 2004. View at Publisher · View at Google Scholar · View at Scopus