Table of Contents Author Guidelines Submit a Manuscript
Journal of Toxicology
Volume 2012, Article ID 132671, 42 pages
http://dx.doi.org/10.1155/2012/132671
Review Article

Metal Toxicity at the Synapse: Presynaptic, Postsynaptic, and Long-Term Effects

Weill Cornell Medical College in Qatar, Qatar Foundation—Education City, P.O. Box 24144, Doha, Qatar

Received 9 May 2011; Accepted 5 July 2011

Academic Editor: David O. Carpenter

Copyright © 2012 Sanah Sadiq et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. J. Craig, G. Eng, and R. O. Jenkins, “Occurrence and pathways of organometallic compounds in the environment—general considerations,” in Organometallic Compounds in the Environment, P. J. Craig, Ed., pp. 1–55, John Wiley & Sons, Chichester, UK, 2003. View at Google Scholar
  2. H. A. Waldron, “Lead poisoning in the ancient world,” Medical History, vol. 17, no. 4, pp. 391–399, 1973. View at Google Scholar
  3. D. R. Crapper, S. S. Krishnan, and S. Quittkat, “Aluminium, neurofibrillary degeneration and Alzheimer's disease,” Brain, vol. 99, no. 1, pp. 67–80, 1976. View at Google Scholar
  4. B. Michalke, S. Halbach, and V. Nischwitz, “JEM spotlight: metal speciation related to neurotoxicity in humans,” Journal of Environmental Monitoring, vol. 11, no. 5, pp. 939–954, 2009. View at Publisher · View at Google Scholar · View at PubMed
  5. H. Needleman, “Low level lead exposure: history and discovery,” Annals of Epidemiology, vol. 19, no. 4, pp. 235–238, 2009. View at Publisher · View at Google Scholar · View at PubMed
  6. D. Swandulla and C. M. Armstrong, “Calcium channel block by cadmium in chicken sensory neurons,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 5, pp. 1736–1740, 1989. View at Google Scholar
  7. A. M. Florea, E. Dopp, and D. Büsselberg, “Elevated Ca2+i transients induced by trimethyltin chloride in HeLa cells: types and levels of response,” Cell Calcium, vol. 37, no. 3, pp. 251–258, 2005. View at Publisher · View at Google Scholar · View at PubMed
  8. A. Vahidnia, G. B. van der Voet, and F. A. de Wolff, “Arsenic neurotoxicity—a review,” Human and Experimental Toxicology, vol. 26, no. 10, pp. 823–832, 2007. View at Publisher · View at Google Scholar · View at PubMed
  9. P. C. L. Wong, J. C. K. Lai, L. Lim, and A. N. Davison, “Selective inhibition of L-glutamate and gammaaminobutyrate transport in nerve ending particles by aluminium, manganese, and cadmium chloride,” Journal of Inorganic Biochemistry, vol. 14, no. 3, pp. 253–260, 1981. View at Publisher · View at Google Scholar
  10. A. L. S. Rodrigues, A. Regner, M. A. Rubin, and D. O. Souza, “Effects of lead on adenylate cyclase activity in rat cerebral cortex,” Neurochemical Research, vol. 24, no. 8, pp. 1037–1042, 1999. View at Publisher · View at Google Scholar
  11. R. H. Chow, “Cadmium block of squid calcium currents. Macroscopic data and a kinetic model,” Journal of General Physiology, vol. 98, no. 4, pp. 751–770, 1991. View at Google Scholar
  12. A. Minami, A. Takeda, D. Nishibaba, S. Takefuta, and N. Oku, “Cadmium toxicity in synaptic neurotransmission in the brain,” Brain Research, vol. 894, no. 2, pp. 336–339, 2001. View at Publisher · View at Google Scholar
  13. C. Marchetti and P. Gavazzo, “NMDA receptors as targets of heavy metal interaction and toxicity,” Neurotoxicity Research, vol. 8, no. 3-4, pp. 245–258, 2005. View at Publisher · View at Google Scholar
  14. J. J. Celentano, M. Gyenes, T. T. Gibbs, and D. H. Farb, “Negative modulation of the γ-aminobutyric acid response by extracellular zinc,” Molecular Pharmacology, vol. 40, no. 5, pp. 766–773, 1991. View at Google Scholar
  15. A. M. Florea and D. Büsselberg, “Occurrence, use and potential toxic effects of metals and metal compounds,” BioMetals, vol. 19, no. 4, pp. 419–427, 2006. View at Publisher · View at Google Scholar · View at PubMed
  16. C. I. Ragan, “Metal ions in neuroscience,” Metal-Based Drugs, vol. 4, no. 3, pp. 125–132, 1997. View at Publisher · View at Google Scholar · View at PubMed
  17. A. Tomaszewski and D. Büsselberg, “Cisplatin modulates voltage gated channel currents of dorsal root ganglion neurons of rats,” NeuroToxicology, vol. 28, no. 1, pp. 49–58, 2007. View at Publisher · View at Google Scholar · View at PubMed
  18. D. Purves et al., “Synaptic transmission,” in Neuroscience, pp. 85–118, Sinauer Associates, Sunderland, UK, 2008. View at Google Scholar
  19. D. Busselberg, B. Platt, D. Michael, D. O. Carpenter, and H. L. Haas, “Mammalian voltage-activated calcium channel currents are blocked by Pb2+, Zn2+, and Al3+,” Journal of Neurophysiology, vol. 71, no. 4, pp. 1491–1497, 1994. View at Google Scholar
  20. D. Julka and K. D. Gill, “Altered calcium homeostasis: a possible mechanism of aluminium-induced neurotoxicity,” Biochimica et Biophysica Acta, vol. 1315, no. 1, pp. 47–54, 1996. View at Publisher · View at Google Scholar
  21. V. Kumar and K. D. Gill, “Aluminium neurotoxicity: neurobehavioural and oxidative aspects,” Archives of Toxicology, vol. 83, no. 11, pp. 965–978, 2009. View at Publisher · View at Google Scholar · View at PubMed
  22. A. Welling, “Voltage-dependent calcium channels,” Biotrend Reviews, pp. 1–2009, 2009. View at Google Scholar
  23. D. Busselberg, M. L. Evans, H. Rahmann, and D. O. Carpenter, “Lead and zinc block a voltage-activated calcium channel of Aplysia neurons,” Journal of Neurophysiology, vol. 65, no. 4, pp. 786–795, 1991. View at Google Scholar
  24. D. Busselberg, M. Pekel, D. Michael, and B. Platt, “Mercury (Hg2+) and zinc (Zn2+): two divalent cations with different actions on voltage-activated calcium channel currents,” Cellular and Molecular Neurobiology, vol. 14, no. 6, pp. 675–686, 1994. View at Publisher · View at Google Scholar
  25. M. L. Evans, D. Busselberg, and D. O. Carpenter, “Pb2+ blocks calcium currents of cultured dorsal root ganglion cells,” Neuroscience Letters, vol. 129, no. 1, pp. 103–106, 1991. View at Publisher · View at Google Scholar · View at Scopus
  26. R. K. Hajela, S. Q. Peng, and W. D. Atchison, “Comparative effects of methylmercury and Hg2+ on human neuronal N- and R-type high-voltage activated calcium channels transiently expressed in human embryonic kidney 293 cells,” Journal of Pharmacology and Experimental Therapeutics, vol. 306, no. 3, pp. 1129–1136, 2003. View at Publisher · View at Google Scholar · View at PubMed
  27. D. Busselberg, M. L. Evans, H. L. Haas, and D. O. Carpenter, “Blockade of mammalian and invertebrate calcium channels by lead,” NeuroToxicology, vol. 14, no. 2-3, pp. 249–258, 1993. View at Google Scholar
  28. G. Audesirk and T. Audesirk, “The effects of inorganic lead on voltage-sensitive calcium channels differ among cell types and among channel subtypes,” NeuroToxicology, vol. 14, no. 2-3, pp. 259–266, 1993. View at Google Scholar
  29. E. Reuveny and T. Narahashi, “Potent blocking action of lead on voltage-activated calcium channels in human neuroblastoma cells SH-SY5Y,” Brain Research, vol. 545, no. 1-2, pp. 312–314, 1991. View at Google Scholar
  30. G. Audesirk and T. Audesirk, “Effects of inorganic lead on voltage-sensitive calcium channels in N1E-115 neuroblastoma cells,” NeuroToxicology, vol. 12, no. 3, pp. 519–528, 1991. View at Google Scholar
  31. D. Busselberg, D. Michael, M. L. Evans, D. O. Carpenter, and H. L. Haas, “Zinc (Zn2+) blocks voltage gated calcium channels in cultured rat dorsal root ganglion cells,” Brain Research, vol. 593, no. 1, pp. 77–81, 1992. View at Publisher · View at Google Scholar
  32. L. Schild and E. Moczydlowski, “Competitive binding interaction between Zn2+ and saxitoxin in cardiac Na+ channels. Evidence for a sulfhydryl group in the Zn2+ saxitoxin binding site,” Biophysical Journal, vol. 59, no. 3, pp. 523–537, 1991. View at Google Scholar
  33. E. Gawrisch, R. Leonhardt, and D. Büsselberg, “Voltage-activated calcium channel currents of rat dorsal root ganglion cells are reduced by trimethyl lead,” Toxicology Letters, vol. 92, no. 2, pp. 117–122, 1997. View at Publisher · View at Google Scholar
  34. T. Hattori and H. Maehashi, “Stannous chloride-induced increase in calcium entry into motor nerve terminals of the frog,” European Journal of Pharmacology, vol. 166, no. 3, pp. 527–530, 1989. View at Google Scholar
  35. S. P. H. Alexander, A. Mathie, and J. A. Peters, “Ion channels,” British Journal of Pharmacology, vol. 141, no. S1, pp. S71–S91, 2004. View at Google Scholar
  36. M. Sue Marty and W. D. Atchison, “Pathways mediating Ca2+ entry in rat cerebellar granule cells following in vitro exposure to methyl mercury,” Toxicology and Applied Pharmacology, vol. 147, no. 2, pp. 319–330, 1997. View at Publisher · View at Google Scholar · View at PubMed
  37. A. L. Goldin, R. L. Barchi, J. H. Caldwell et al., “Nomenclature of voltage-gated sodium channels,” Neuron, vol. 28, no. 2, pp. 365–368, 2000. View at Google Scholar
  38. J. E. Sirois and W. D. Atchison, “Methylmercury affects multiple subtypes of calcium channels in rat cerebellar granule cells,” Toxicology and Applied Pharmacology, vol. 167, no. 1, pp. 1–11, 2000. View at Publisher · View at Google Scholar · View at PubMed
  39. T. J. Shafer and W. D. Atchison, “Methylmercury blocks N- and L-type Ca++ channels in nerve growth factor-differentiated pheochromocytoma (PC12) cells,” Journal of Pharmacology and Experimental Therapeutics, vol. 258, no. 1, pp. 149–157, 1991. View at Google Scholar
  40. M. Pekel, B. Platt, and D. Busselberg, “Mercury (Hg2+) decreases voltage-gated calcium channels currents in rat DRG and Aplysia neurons,” Brain Research, vol. 632, no. 1-2, pp. 121–126, 1993. View at Publisher · View at Google Scholar
  41. A. Tomaszewski and D. Büsselberg, “SnCl2 reduces voltage-activated calcium channel currents of dorsal root ganglion neurons of rats,” NeuroToxicology, vol. 29, no. 6, pp. 958–963, 2008. View at Publisher · View at Google Scholar · View at PubMed
  42. C. Frelin, C. Cognard, P. Vigne, and M. Lazdunski, “Tetrodotoxin-sensitive and tetrodotoxin-resistant Na+ channels differ in their sensitivity to Cd2+ and Zn2+,” European Journal of Pharmacology, vol. 122, no. 2, pp. 245–250, 1986. View at Google Scholar
  43. J. Györi, O. Platoshyn, D. O. Carpenter, and J. Salánki, “Effect of inorganic and organic tin compounds on ACh- and voltage- activated Na currents,” Cellular and Molecular Neurobiology, vol. 20, no. 5, pp. 591–604, 2000. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Ravindran, L. Schild, and E. Moczydlowski, “Divalent cation selectivity for external block of voltage-dependent Na+ channels prolonged by batrachotoxin. Zn2+ induces discrete substates in crdiac Na+ channels,” Journal of General Physiology, vol. 97, no. 1, pp. 89–115, 1991. View at Publisher · View at Google Scholar · View at Scopus
  45. W. A. Coetzee, Y. Amarillo, J. Chiu et al., “Molecular diversity of K+ channels,” Annals of the New York Academy of Sciences, vol. 868, no. 1, pp. 233–285, 1999. View at Publisher · View at Google Scholar · View at Scopus
  46. R. C. Huang, Y. W. Peng, and K. W. Yau, “Zinc modulation of a transient potassium current and histochemical localization of the metal in neurons of the suprachiasmatic nucleus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 24, pp. 11806–11810, 1993. View at Publisher · View at Google Scholar · View at Scopus
  47. C. C. Kuo and F. P. Chen, “Zn2+ modulation of neuronal transient K+ current: fast and selective binding to the deactivated channels,” Biophysical Journal, vol. 77, no. 5, pp. 2552–2562, 1999. View at Google Scholar · View at Scopus
  48. T. X. Xu, N. Gong, and T. L. Xu, “Divalent cation modulation of A-type potassium channels in acutely dissociated central neurons from wide-type and mutant Drosophila,” Journal of Neurogenetics, vol. 19, no. 2, pp. 87–107, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. C. S. Watkins and A. Mathie, “Modulation of the gating of the transient outward potassium current of rat isolated cerebellar granule neurons by lanthanum,” Pflugers Archiv: European Journal of Physiology, vol. 428, no. 3-4, pp. 209–216, 1994. View at Google Scholar · View at Scopus
  50. M. L. Mayer and K. Sugiyama, “A modualtory action of divalent cations on transient outward current in cultured rat sensory neurones,” Journal of Physiology, vol. 396, pp. 417–433, 1988. View at Google Scholar · View at Scopus
  51. R. Leonhardt, H. Haas, and D. Büsselberg, “Methyl mercury reduces voltage-activated currents of rat dorsal root ganglion neurons,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 354, no. 4, pp. 532–538, 1996. View at Google Scholar · View at Scopus
  52. A. P. de Jong and M. Verhage, “Presynaptic signal transduction pathways that modulate synaptic transmission,” Current Opinion in Neurobiology, vol. 19, no. 3, pp. 245–253, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. R. Sandhir and K. D. Gill, “Calmodulin and cAMP dependent synaptic vesicle protein phosphorylation in rat cortex following lead exposure,” International Journal of Biochemistry, vol. 26, no. 12, pp. 1383–1389, 1994. View at Google Scholar · View at Scopus
  54. U. Ewers and R. Erbe, “Effects of lead, cadmium and mercury on brain adenylate cyclase,” Toxicology, vol. 16, no. 3, pp. 227–237, 1980. View at Publisher · View at Google Scholar · View at Scopus
  55. T. Narahashi, J. Y. Ma, O. Arakawa, E. Reuveny, and M. Nakahiro, “GABA receptor-channel complex as a target site of mercury, copper, zinc, and lanthanides,” Cellular and Molecular Neurobiology, vol. 14, no. 6, pp. 599–621, 1994. View at Publisher · View at Google Scholar
  56. M. K. Nihei and T. R. Guilarte, “NNMDAR-2A subunit protein expression is reduced in the hippocampus of rats exposed to Pb2+ during development,” Molecular Brain Research, vol. 66, no. 1-2, pp. 42–49, 1999. View at Publisher · View at Google Scholar
  57. T. R. Guilarte and J. L. McGlothan, “Hippocampal NMDA receptor MRNA undergoes subunit specific changes during developmental lead exposure,” Brain Research, vol. 790, no. 1-2, pp. 98–107, 1998. View at Publisher · View at Google Scholar
  58. P. J. S. Vig, K. Ravi, and R. Nath, “Interaction of metals with brain calmodulin purified from normal and cadmium exposed rats,” Drug and Chemical Toxicology, vol. 14, no. 1-2, pp. 207–218, 1991. View at Google Scholar
  59. R. Sandhir and K. D. Gill, “Lead perturbs calmodulin dependent cyclic AMP metabolism in rat central nervous system,” Biochemistry and Molecular Biology International, vol. 33, no. 4, pp. 729–742, 1994. View at Google Scholar
  60. N. Siegel and A. Haug, “Aluminum interaction with calmodulin. Evidence for altered structure and function from optical and enzymatic studies,” Biochimica et Biophysica Acta, vol. 744, no. 1, pp. 36–45, 1983. View at Google Scholar
  61. J. L. Cox and S. D. Harrison, “Correlation of metal toxicity with in vitro calmodulin inhibition,” Biochemical and Biophysical Research Communications, vol. 115, no. 1, pp. 106–111, 1983. View at Google Scholar
  62. R. Levi, T. Wolf, G. Fleminger, and B. Solomon, “Immuno-detection of aluminium and aluminium induced conformational changes in calmodulin-implications in Alzheimer's disease,” Molecular and Cellular Biochemistry, vol. 189, no. 1-2, pp. 41–46, 1998. View at Google Scholar
  63. R. Ohtani-Kaneko, H. Tazawa, M. Yokosuka, M. Yoshida, M. Satoh, and C. Watanabe, “Suppressive effects of cadmium on neurons and affected proteins in cultured developing cortical cells,” Toxicology, vol. 253, no. 1-3, pp. 110–116, 2008. View at Publisher · View at Google Scholar · View at PubMed
  64. B. Rajanna, C. S. Chetty, S. Rajanna, E. Hall, S. Fail, and P. R. Yallapragada, “Modulation of protein kinase C by heavy metals,” Toxicology Letters, vol. 81, no. 2-3, pp. 197–203, 1995. View at Publisher · View at Google Scholar
  65. S. Z. Xu, L. Bullock, C. J. Shan, K. Cornelius, and B. Rajanna, “PKC isoforms were reduced by lead in the developing rat brain,” International Journal of Developmental Neuroscience, vol. 23, no. 1, pp. 53–64, 2005. View at Publisher · View at Google Scholar · View at PubMed
  66. Y. Inoue, K. Saijoh, and K. Sumino, “Action of mercurials on activity of partially purified soluble protein kinase C from mice brain,” Pharmacology and Toxicology, vol. 62, no. 5, pp. 278–281, 1988. View at Google Scholar
  67. K. Saijoh, T. Fukunaga, H. Katsuyama, Myeong Jin Lee, and K. Sumino, “Effects of methylmercury on protein kinase A and protein kinase C in the mouse brain,” Environmental Research, vol. 63, no. 2, pp. 264–273, 1993. View at Publisher · View at Google Scholar · View at PubMed
  68. M. K. Nihei, J. L. McGlothan, C. D. Toscano, and T. R. Guilarte, “Low level Pb2+ exposure affects hippocampal protein kinase Cγ gene and protein expression in rats,” Neuroscience Letters, vol. 298, no. 3, pp. 212–216, 2001. View at Publisher · View at Google Scholar
  69. G. V. W. Johnson, K. W. Cogdill, and R. S. Jope, “Oral alumimum alters in vitro protein phosphorylation and kinase activities in rat brain,” Neurobiology of Aging, vol. 11, no. 3, pp. 209–216, 1990. View at Publisher · View at Google Scholar
  70. A. A. Coppi, J. Lesniak, D. Zieba, and F. A. X. Schanne, “The effects of lead on PKC isoforms,” Annals of the New York Academy of Sciences, vol. 919, pp. 304–306, 2000. View at Google Scholar
  71. C. Hermenegildo, R. Sáez, C. Minoia, L. Manzo, and V. Felipo, “Chronic exposure to aluminium impairs the glutamate-nitric oxide-cyclic GMP pathway in the rat in vivo,” Neurochemistry International, vol. 34, no. 3, pp. 245–253, 1999. View at Publisher · View at Google Scholar
  72. S. Zarazúa, F. Pérez-Severiano, J. M. Delgado, L. M. Martínez, D. Ortiz-Pérez, and M. E. Jiménez-Capdeville, “Decreased nitric oxide production in the rat brain after chronic arsenic exposure,” Neurochemical Research, vol. 31, no. 8, pp. 1069–1077, 2006. View at Publisher · View at Google Scholar · View at PubMed
  73. C. K. Mittal, W. B. Harrell, and C. S. Mehta, “Interaction of heavy metal toxicants with brain constitutive nitric oxide synthase,” Molecular and Cellular Biochemistry, vol. 149-150, pp. 263–265, 1995. View at Publisher · View at Google Scholar
  74. G. García-Arenas, V. Ramírez-Amaya, I. Balderas et al., “Cognitive deficits in adult rats by lead intoxication are related with regional specific inhibition of cNOS,” Behavioural Brain Research, vol. 149, no. 1, pp. 49–59, 2004. View at Publisher · View at Google Scholar
  75. C. S. Chetty, G. R. Reddy, K. S. Murthy, J. Johnson, K. Sajwan, and D. Desaiah, “Perinatal lead exposure alters the expression of neuronal nitric oxide synthase in rat brain,” International Journal of Toxicology, vol. 20, no. 3, pp. 113–120, 2001. View at Publisher · View at Google Scholar
  76. M. Llansola, M. D. Miñana, C. Montoliu et al., “Prenatal exposure to aluminum reduces expression of neuronal nitric oxide synthase and of soluble guanylate cyclase and impairs glutamatergic neurotransmission in rat cerebellum,” Journal of Neurochemistry, vol. 73, no. 2, pp. 712–718, 1999. View at Publisher · View at Google Scholar
  77. Y. Wang, S. Li, F. Piao, Y. Hong, P. Liu, and Y. Zhao, “Arsenic down-regulates the expression of Camk4, an important gene related to cerebellar LTD in mice,” Neurotoxicology and Teratology, vol. 31, no. 5, pp. 318–322, 2009. View at Publisher · View at Google Scholar · View at PubMed
  78. C. D. Toscano, J. P. O'Callaghan, and T. R. Guilarte, “Calcium/calmodulin-dependent protein kinase II activity and expression are altered in the hippocampus of Pb2+-exposed rats,” Brain Research, vol. 1044, no. 1, pp. 51–58, 2005. View at Publisher · View at Google Scholar · View at PubMed
  79. A. P. Rigon, F. M. Cordova, C. S. Oliveira et al., “Neurotoxicity of cadmium on immature hippocampus and a neuroprotective role for p38MAPK,” NeuroToxicology, vol. 29, no. 4, pp. 727–734, 2008. View at Publisher · View at Google Scholar · View at PubMed
  80. F. M. Cordova, A. L. S. Rodrigues, M. B. O. Giacomelli et al., “Lead stimulates ERK1/2 and p38MAPK phosphorylation in the hippocampus of immature rats,” Brain Research, vol. 998, no. 1, pp. 65–72, 2004. View at Publisher · View at Google Scholar
  81. C. D. Toscano, H. Hashemzadeh-Gargari, J. L. McGlothan, and T. R. Guilarte, “Developmental Pb2+ exposure alters NMDAR subtypes and reduces CREB phosphorylation in the rat brain,” Developmental Brain Research, vol. 139, no. 2, pp. 217–226, 2002. View at Publisher · View at Google Scholar
  82. C. Klein, R. K. Sunahara, T. Y. Hudson, T. Heyduk, and A. C. Howlett, “Zinc inhibition of cAMP signaling,” Journal of Biological Chemistry, vol. 277, no. 14, pp. 11859–11865, 2002. View at Publisher · View at Google Scholar · View at PubMed
  83. C. Klein, T. Heyduk, and R. K. Sunahara, “Zinc inhibition of adenylyl cyclase correlates with conformational changes in the enzyme,” Cellular Signalling, vol. 16, no. 10, pp. 1177–1185, 2004. View at Publisher · View at Google Scholar · View at PubMed
  84. N. E. Ziv and C. C. Garner, “Cellular and molecular mechanisms of presynaptic assembly,” Nature Reviews Neuroscience, vol. 5, no. 5, pp. 385–399, 2004. View at Google Scholar
  85. J. B. Suszkiw, “Presynaptic disruption of transmitter release by lead,” NeuroToxicology, vol. 25, no. 4, pp. 599–604, 2004. View at Publisher · View at Google Scholar · View at PubMed
  86. T. A. Slotkin and F. J. Seidler, “Protein kinase C is a target for diverse developmental neurotoxicants: transcriptional responses to chlorpyrifos, diazinon, dieldrin and divalent nickel in PC12 cells,” Brain Research, vol. 1263, no. C, pp. 23–32, 2009. View at Publisher · View at Google Scholar · View at PubMed
  87. J. Rizo and T. C. Südhof, “Snares and munc18 in synaptic vesicle fusion,” Nature Reviews Neuroscience, vol. 3, no. 8, pp. 641–653, 2002. View at Google Scholar
  88. F. Splettstoesser, A. M. Florea, and D. Büsselberg, “IP3 receptor antagonist, 2-APB, attenuates cisplatin induced Ca2+-influx in HeLa-S3 cells and prevents activation of calpain and induction of apoptosis,” British Journal of Pharmacology, vol. 151, no. 8, pp. 1176–1186, 2007. View at Publisher · View at Google Scholar · View at PubMed
  89. T. A. Sarafian, “Methyl mercury increases intracellular Ca2+ and inositol phosphate levels in cultured cerebellar granule neurons,” Journal of Neurochemistry, vol. 61, no. 2, pp. 648–657, 1993. View at Google Scholar
  90. S. K. Aggarwal, “A histochemical approach to the mechanism of action of cisplatin and its analogues,” Journal of Histochemistry and Cytochemistry, vol. 41, no. 7, pp. 1053–1073, 1993. View at Google Scholar
  91. M. Gemba, E. Nakatani, M. Teramoto, and S. Nakano, “Effect of cisplatin on calcium uptake by rat kidney cortical mitochondria,” Toxicology Letters, vol. 38, no. 3, pp. 291–297, 1987. View at Google Scholar
  92. M. Sue Marty and W. D. Atchison, “Elevations of intracellular Ca2+ as a probable contributor to decreased viability in cerebellar granule cells following acute exposure to methylmercury,” Toxicology and Applied Pharmacology, vol. 150, no. 1, pp. 98–105, 1998. View at Publisher · View at Google Scholar · View at PubMed
  93. R. J. DeLorenzo, “The calmodulin hypothesis of neurotransmission,” Cell Calcium, vol. 2, no. 4, pp. 365–385, 1981. View at Google Scholar
  94. C. R. Angle and M. S. McIntire, “Red cell lead, whole blood lead, and red cell enzymes,” Environmental Health Perspectives, vol. 7, pp. 133–137, 1974. View at Google Scholar
  95. M. Aschner and J. L. Aschner, “Mercury neurotoxicity: mechanisms of blood-brain barrier transport,” Neuroscience and Biobehavioral Reviews, vol. 14, no. 2, pp. 169–176, 1990. View at Publisher · View at Google Scholar
  96. M. T. Antonio, L. Corredor, and M. L. Leret, “Study of the activity of several brain enzymes like markers of the neurotoxicity induced by perinatal exposure to lead and/or cadmium,” Toxicology Letters, vol. 143, no. 3, pp. 331–340, 2003. View at Publisher · View at Google Scholar
  97. M. Aschner and J. L. Aschner, “Cellular and molecular effects of trimethyltin and triethyltin: relevance to organotin neurotoxicity,” Neuroscience and Biobehavioral Reviews, vol. 16, no. 4, pp. 427–435, 1992. View at Publisher · View at Google Scholar
  98. E. W. Haeffner, H. P. Zimmermann, and C. J. K. Hoffmann, “Influence of triethyl lead on the activity of enzymes of the ascites tumor cell plasma membrane and its microviscosity,” Toxicology Letters, vol. 23, no. 2, pp. 183–188, 1984. View at Google Scholar
  99. K. E. Stine, L. W. Reiter, and J. J. Lemasters, “Alkyltin inhibition of ATPase activities in tissue homogenates and subcellular fractions from adults and neonatal rats,” Toxicology and Applied Pharmacology, vol. 94, no. 3, pp. 394–406, 1988. View at Google Scholar
  100. T. C. Südhof and J. Rizo, “Synaptotagmins: C2-domain proteins that regulate membrane traffic,” Neuron, vol. 17, no. 3, pp. 379–388, 1996. View at Publisher · View at Google Scholar
  101. C. M. L. S. Bouton, L. P. Frelin, C. E. Forde, H. A. Godwin, and J. Pevsner, “Synaptotagmin I is a molecular target for lead,” Journal of Neurochemistry, vol. 76, no. 6, pp. 1724–1735, 2001. View at Publisher · View at Google Scholar
  102. D. Rajalingam, T. K. S. Kumar, and C. Yu, “The C2A domain of synaptotagmin exhibits a high binding affinity for copper: implications in the formation of the multiprotein FGF release complex,” Biochemistry, vol. 44, no. 44, pp. 14431–14442, 2005. View at Publisher · View at Google Scholar · View at PubMed
  103. K. M. Kathir, L. Gao, D. Rajalingam et al., “NMR characterization of copper and lipid interactions of the C2B domain of synaptotagmin I-relevance to the non-classical secretion of the human acidic fibroblast growth factor (hFGF-1),” Biochimica et Biophysica Acta, vol. 1798, no. 2, pp. 297–302, 2010. View at Publisher · View at Google Scholar · View at PubMed
  104. T. O. Brock and J. P. O'Callaghan, “Quantitative changes in the synaptic vesicle proteins synapsin I and p38 and the astrocyte-specific protein glial fibrillary acidic protein are associated with chemical-induced injury to the rat central nervous system,” Journal of Neuroscience, vol. 7, no. 4, pp. 931–942, 1987. View at Google Scholar
  105. J. Wang, M. F. Rahman, H. M. Duhart et al., “Expression changes of dopaminergic system-related genes in PC12 cells induced by manganese, silver, or copper nanoparticles,” NeuroToxicology, vol. 30, no. 6, pp. 926–933, 2009. View at Publisher · View at Google Scholar · View at PubMed
  106. S. V. Verstraeten, L. Aimo, and P. I. Oteiza, “Aluminium and lead: molecular mechanisms of brain toxicity,” Archives of Toxicology, vol. 82, no. 11, pp. 789–802, 2008. View at Publisher · View at Google Scholar · View at PubMed
  107. R. B. Mailman, M. R. Krigman, G. D. Frye, and I. Hanin, “Effects of postnatal trimethyltin or triethyltin treatment on CNS catecholamine, GABA, and acetylcholine systems in the rat,” Journal of Neurochemistry, vol. 40, no. 5, pp. 1423–1429, 1983. View at Google Scholar
  108. T. Hattori and H. Maehashi, “Acceleration by stannous ion of the evoked release of transmitter from motor nerve endings in the frog,” Brain Research, vol. 473, no. 1, pp. 157–160, 1988. View at Google Scholar
  109. M. F. M. Braga, E. F. R. Pereira, M. Marchioro, and E. X. Albuquerque, “Lead increases tetrodotoxin-insensitive spontaneous release of glutamate and GABA from hippocampal neurons,” Brain Research, vol. 826, no. 1, pp. 10–21, 1999. View at Publisher · View at Google Scholar
  110. S. V. Doctor, L. G. Costa, D. A. Kendall, and S. D. Murphy, “Trimethyltin inhibits uptake of neurotransmitters into mouse forebrain synaptosomes,” Toxicology, vol. 25, no. 2-3, pp. 213–221, 1982. View at Google Scholar
  111. B. C. Seidman and M. A. Verity, “Selective inhibition of synaptosomal γ-aminobutyric acid uptake by triethyllead: role of energy transduction and chloride ion,” Journal of Neurochemistry, vol. 48, no. 4, pp. 1142–1149, 1987. View at Google Scholar
  112. D. N. Skilleter, “The decrease of mitochondrial substrate uptake caused by trialkyltin and trialkyl lead compounds in chloride media and its relevance to inhibition of oxidative phosphorylation,” Biochemical Journal, vol. 146, no. 2, pp. 465–471, 1975. View at Google Scholar
  113. A. Vahidnia, F. Romijn, M. Tiller, G. B. Van Der Voet, and F. A. De Wolff, “Arsenic-induced toxicity: effect on protein composition in sciatic nerve,” Human and Experimental Toxicology, vol. 25, no. 11, pp. 667–674, 2006. View at Publisher · View at Google Scholar
  114. H. P. Zimmermann, K. H. Doenges, and G. Roderer, “Interaction of triethyl lead chloride with microtubules in vitro and in mammalian cells,” Experimental Cell Research, vol. 156, no. 1, pp. 140–152, 1985. View at Google Scholar
  115. H. Faulstich, C. Stournaras, K. H. Doenges, and H. P. Zimmermann, “The molecular mechanism of interaction of Et3Pb+ with tubulin,” FEBS Letters, vol. 174, no. 1, pp. 128–131, 1984. View at Google Scholar
  116. C. Stournaras, G. Weber, and H. P. Zimmermann, “High cytotoxicity and membrane permeability of Et3Pb+ in mammalian and plant cells,” Cell Biochemistry and Function, vol. 2, no. 4, pp. 213–216, 1984. View at Google Scholar
  117. H. P. Zimmermann, U. Plagens, and P. Traub, “Influence of triethyl lead on neurofilaments in vivo and in vitro,” NeuroToxicology, vol. 8, no. 4, pp. 569–578, 1987. View at Google Scholar
  118. T. G. Smart, A. M. Hosie, and P. S. Miller, “Zn2+ ions: modulators of excitatory and inhibitory synaptic activity,” Neuroscientist, vol. 10, no. 5, pp. 432–442, 2004. View at Publisher · View at Google Scholar · View at PubMed
  119. R. Dingledine, K. Borges, D. Bowie, and S. F. Traynelis, “The glutamate receptor ion channels,” Pharmacological Reviews, vol. 51, no. 1, pp. 7–61, 1999. View at Google Scholar
  120. P. Paoletti and J. Neyton, “NMDA receptor subunits: function and pharmacology,” Current Opinion in Pharmacology, vol. 7, no. 1, pp. 39–47, 2007. View at Publisher · View at Google Scholar · View at PubMed
  121. M. Hollmann, J. Boulter, C. Maron et al., “Zinc potentiates agonist-induced currents at certain splice variants of the NMDA receptor,” Neuron, vol. 10, no. 5, pp. 943–954, 1993. View at Publisher · View at Google Scholar
  122. S. F. Traynelis, M. F. Burgess, F. Zheng, P. Lyuboslavsky, and J. L. Powers, “Control of voltage-independent Zinc inhibition of NMDA receptors by the NR1 subunit,” Journal of Neuroscience, vol. 18, no. 16, pp. 6163–6175, 1998. View at Google Scholar
  123. P. Gavazzo, P. Guida, I. Zanardi, and C. Marchetti, “Molecular determinants of multiple effects of nickel on NMDA receptor channels,” Neurotoxicity Research, vol. 15, no. 1, pp. 38–48, 2009. View at Publisher · View at Google Scholar · View at PubMed
  124. R. Schoepfer, H. Monyer, B. Sommr et al., “Molecular biology of glutamate receptors,” Progress in Neurobiology, vol. 42, no. 2, pp. 353–357, 1994. View at Publisher · View at Google Scholar
  125. M. L. Mayer, G. L. Westbrook, and P. B. Buthrie, “Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones,” Nature, vol. 309, no. 5965, pp. 261–263, 1984. View at Google Scholar
  126. L. Nowak, P. Bregestovski, and P. Ascher, “Magnesium gates glutamate-activated channels in mouse central neurones,” Nature, vol. 307, no. 5950, pp. 462–465, 1984. View at Google Scholar
  127. B. Ault, R. H. Evans, A. A. Francis, D. J. Oakes, and J. C. Watkins, “Selective depression of excitatory amino acid induced depolarizations by magnesium ions in isolated spinal cord preparations,” Journal of Physiology, vol. 307, pp. 413–428, 1980. View at Google Scholar
  128. L. P. Wollmuth, T. Kuner, and B. Sakmann, “Adjacent asparagines in the NR2-subunit of the NMDA receptor channel control the voltage-dependent block by extracellular Mg2+,” Journal of Physiology, vol. 506, no. 1, pp. 13–32, 1998. View at Publisher · View at Google Scholar
  129. L. Y. Wang and J. F. MacDonald, “Modulation by magnesium of the affinity of NMDA receptors for glycine in murine hippocampal neurones,” Journal of Physiology, vol. 486, no. 1, pp. 83–95, 1995. View at Google Scholar
  130. P. Paoletti, J. Neyton, and P. Ascher, “Glycine-independent and subunit-specific potentiation of NMDA responses by extracellular Mg2+,” Neuron, vol. 15, no. 5, pp. 1109–1120, 1995. View at Publisher · View at Google Scholar
  131. E. Kumamoto, “Neuromodulation by Mg2+ and polyamines of excitatory amino acid currents in rodent neurones in culture,” Magnesium Research, vol. 9, no. 4, pp. 317–327, 1996. View at Google Scholar
  132. M. Benveniste and M. L. Mayer, “Multiple effects of spermine on N-methyl-D-aspartic acid receptor responses of rat cultured hippocampal neurones,” Journal of Physiology, vol. 464, pp. 131–163, 1993. View at Google Scholar
  133. L. Mony, J. N. C. Kew, M. J. Gunthorpe, and P. Paoletti, “Allosteric modulators of NR2B-containing NMDA receptors: molecular mechanisms and therapeutic potential,” British Journal of Pharmacology, vol. 157, no. 8, pp. 1301–1317, 2009. View at Publisher · View at Google Scholar · View at PubMed
  134. P. Paoletti, A. M. Vergnano, B. Barbour, and M. Casado, “Zinc at glutamatergic synapses,” Neuroscience, vol. 158, no. 1, pp. 126–136, 2009. View at Publisher · View at Google Scholar · View at PubMed
  135. C. J. Frederickson, S. W. Suh, D. Silva, C. J. Frederickson, and R. B. Thompson, “Importance of zinc in the central nervous system: the zinc-containing neuron,” Journal of Nutrition, vol. 130, no. 5, pp. 1471S–1483S, 2000. View at Google Scholar
  136. M. L. Mayer, L. Vyklicky, and G. L. Westbrook, “Modulation of excitatory amino acid receptors by group IIB metal cations in cultured mouse hippocampal neurones,” Journal of Physiology, vol. 415, pp. 329–350, 1989. View at Google Scholar
  137. G. L. Westbrook and M. L. Mayer, “Micromolar concentrations of Zn2+ antagonize NMDA and GABA responses of hippocampal neurons,” Nature, vol. 328, no. 6131, pp. 640–643, 1987. View at Google Scholar
  138. C. W. Christine and D. W. Choi, “Effect of zinc on NMDA receptor-mediated channel currents in cortical neurons,” Journal of Neuroscience, vol. 10, no. 1, pp. 108–116, 1990. View at Google Scholar
  139. P. Legendre and G. L. Westbrook, “The inhibition of single N-methyl-D-aspartate-activated channels by zinc ions on cultured rat neurones,” Journal of Physiology, vol. 429, pp. 429–449, 1990. View at Google Scholar
  140. P. Paoletti, F. Perin-Dureau, A. Fayyazuddin, A. Le Goff, I. Callebaut, and J. Neyton, “Molecular organization of a zinc binding N-terminal modulatory domain in a NMDA receptor subunit,” Neuron, vol. 28, no. 3, pp. 911–925, 2000. View at Publisher · View at Google Scholar
  141. G. A. Herin and E. Aizenman, “Amino terminal domain regulation of NMDA receptor function,” European Journal of Pharmacology, vol. 500, no. 1–3, pp. 101–111, 2004. View at Publisher · View at Google Scholar · View at PubMed
  142. P. Paoletti, P. Ascher, and J. Neyton, “High-affinity zinc inhibition of NMDA NR1-NR2A receptors,” Journal of Neuroscience, vol. 17, no. 15, pp. 5711–5725, 1997. View at Google Scholar
  143. M. Gielen, A. Le Goff, D. Stroebel, J. W. Johnson, J. Neyton, and P. Paoletti, “Structural rearrangements of NR1/NR2A NMDA receptors during allosteric inhibition,” Neuron, vol. 57, no. 1, pp. 80–93, 2008. View at Publisher · View at Google Scholar · View at PubMed
  144. K. Erreger and S. F. Traynelis, “Zinc inhibition of rat NR1/NR2A N-methyl-d-aspartate receptors,” Journal of Physiology, vol. 586, no. 3, pp. 763–778, 2008. View at Publisher · View at Google Scholar · View at PubMed
  145. J. Rachline, F. Perin-Dureau, A. Le Goff, J. Neyton, and P. Paoletti, “The micromolar zinc-binding domain on the NMDA receptor subunit NR2B,” Journal of Neuroscience, vol. 25, no. 2, pp. 308–317, 2005. View at Publisher · View at Google Scholar · View at PubMed
  146. A. Fayyazuddin, A. Villarroel, A. Le Goff, J. Lerma, and J. Neyton, “Four residues of the extracellular N-terminal domain of the NR2A subunit control high-affinity Zn2+ binding to NMDA receptors,” Neuron, vol. 25, no. 3, pp. 683–694, 2000. View at Google Scholar
  147. D. Busselberg, D. Michael, and B. Platt, “Pb2+ reduces voltage- and N-methyl-D-aspartate (NMDA)-activated calcium channel currents,” Cellular and Molecular Neurobiology, vol. 14, no. 6, pp. 711–722, 1994. View at Publisher · View at Google Scholar
  148. M. Alkondon, A. C. S. Costa, V. Radhakrishnan, R. S. Aronstam, and E. X. Albuquerque, “Selective blockade of NMDA-activated channel currents may be implicated in learning deficits caused by lead,” FEBS Letters, vol. 261, no. 1, pp. 124–130, 1990. View at Publisher · View at Google Scholar
  149. K. Ishihara, M. Alkondon, J. G. Montes, and E. X. Albuquerque, “Ontogenically related properties of N-methyl-D-aspartate receptors in rat hippocampal neurons and the age-specific sensitivity of developing neurons to lead,” Journal of Pharmacology and Experimental Therapeutics, vol. 273, no. 3, pp. 1459–1470, 1995. View at Google Scholar
  150. H. Ujihara and E. X. Albuquerque, “Developmental change of the inhibition by lead of NMDA-activated currents in cultured hippocampal neurons,” Journal of Pharmacology and Experimental Therapeutics, vol. 263, no. 2, pp. 868–875, 1992. View at Google Scholar
  151. C. Marchetti, “Molecular targets of lead in brain neurotoxicity,” Neurotoxicity Research, vol. 5, no. 3, pp. 221–235, 2003. View at Publisher · View at Google Scholar
  152. T. R. Guilarte and R. C. Miceli, “Age-dependent effects of lead on [3H]MK-801 binding to the NMDA receptor-gated ionophore: In vitro and in vivo studies,” Neuroscience Letters, vol. 148, no. 1-2, pp. 27–30, 1992. View at Publisher · View at Google Scholar
  153. T. R. Guilarte, “Pb2+ inhibits NMDA receptor function at high and low affinity sites: developmental and regional brain expression,” NeuroToxicology, vol. 18, no. 1, pp. 43–52, 1997. View at Google Scholar
  154. T. R. Guilarte, R. C. Miceli, and D. A. Jett, “Biochemical evidence of an interaction of lead at the zinc allosteric sites of the NMDA receptor complex: effects of neuronal development,” NeuroToxicology, vol. 16, no. 1, pp. 63–71, 1995. View at Google Scholar
  155. D. P. Alfano and T. L. Petit, “Neonatal lead exposure alters the dendritic development of hippocampal dentate granule cells,” Experimental Neurology, vol. 75, no. 2, pp. 275–288, 1982. View at Google Scholar
  156. T. L. Petit, D. P. Alfano, and J. C. LeBoutillier, “Early lead exposure and the hippocampus: a review and recent advances,” NeuroToxicology, vol. 4, no. 1, pp. 79–94, 1983. View at Google Scholar
  157. I. A. Omelchenko, C. S. Nelson, J. L. Marino, and C. N. Allen, “The sensitivity of N-methyl-D-aspartate receptors to lead inhibition is dependent on the receptor subunit composition,” Journal of Pharmacology and Experimental Therapeutics, vol. 278, no. 1, pp. 15–20, 1996. View at Google Scholar
  158. Y. Yamada, H. Ujihara, H. Sada, and T. Ban, “Pb2+ reduces the current from NMDA receptors expressed in Xenopus oocytes,” FEBS Letters, vol. 377, no. 3, pp. 390–392, 1995. View at Publisher · View at Google Scholar
  159. I. A. Omelchenko, C. S. Nelson, and C. N. Allen, “Lead inhibition of N-methyl-D-aspartate receptors containing NR2A, NR2C and NR2D subunits,” Journal of Pharmacology and Experimental Therapeutics, vol. 282, no. 3, pp. 1458–1464, 1997. View at Google Scholar
  160. S. M. Lasley and M. E. Gilbert, “Lead inhibits the rat N-methyl-D-aspartate receptor channel by binding to a site distinct from the zinc allosteric site,” Toxicology and Applied Pharmacology, vol. 159, no. 3, pp. 224–233, 1999. View at Publisher · View at Google Scholar · View at PubMed
  161. T. R. Guilarte, R. C. Miceli, and D. A. Jett, “Neurochemical aspects of hippocampal and cortical Pb2+ neurotoxicity,” NeuroToxicology, vol. 15, no. 3, pp. 459–466, 1994. View at Google Scholar
  162. S. Schulte, W. E. Muller, and K. D. Friedberg, “In vitro and in vivo effects of lead on specific 3H-MK-801 binding to NMDA-receptors in the brain of mice,” NeuroToxicology, vol. 16, no. 2, pp. 309–318, 1995. View at Google Scholar
  163. C. Marchetti and P. Gavazzo, “Subunit-dependent effects of nickel on NMDA receptor channels,” Molecular Brain Research, vol. 117, no. 2, pp. 139–144, 2003. View at Publisher · View at Google Scholar
  164. C. M. Low, F. Zheng, P. Lyuboslavsky, and S. F. Traynelis, “Molecular determinants of coordinated proton and zinc inhibition of N-methyl-D-aspartate NR1/NR2A receptors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 20, pp. 11062–11067, 2000. View at Google Scholar
  165. Y. H. Hung, A. I. Bush, and R. A. Cherny, “Copper in the brain and Alzheimer's disease,” Journal of Biological Inorganic Chemistry, vol. 15, no. 1, pp. 61–76, 2010. View at Publisher · View at Google Scholar · View at PubMed
  166. A. I. Bush and R. E. Tanzi, “Therapeutics for Alzheimer's disease based on the metal hypothesis,” Neurotherapeutics, vol. 5, no. 3, pp. 421–432, 2008. View at Publisher · View at Google Scholar · View at PubMed
  167. A. Barnea, D. E. Hartter, G. Cho, K. R. Bhasker, B. M. Katz, and M. D. Edwards, “Further characterization of the process of in vitro uptake of radiolabeled copper by the rat brain,” Journal of Inorganic Biochemistry, vol. 40, no. 2, pp. 103–110, 1990. View at Publisher · View at Google Scholar
  168. J. Kardos, I. Kovacs, F. Hajos, M. Kalman, and M. Simonyi, “Nerve endings from rat brain tissue release copper upon depolarization. A possible role in regulating neuronal excitability,” Neuroscience Letters, vol. 103, no. 2, pp. 139–144, 1989. View at Google Scholar
  169. A. Hopt, S. Korte, H. Fink et al., “Methods for studying synaptosomal copper release,” Journal of Neuroscience Methods, vol. 128, no. 1-2, pp. 159–172, 2003. View at Publisher · View at Google Scholar
  170. D. E. Hartter and A. Barnea, “Evidence for release of copper in the brain: depolarization-induced release of newly taken-up 67copper,” Synapse, vol. 2, no. 4, pp. 412–415, 1988. View at Google Scholar
  171. P. Y. Wong and K. Fritze, “Determination by neutron activation of copper, manganese, and zinc in the pineal body and other areas of brain tissue,” Journal of Neurochemistry, vol. 16, no. 8, pp. 1231–1234, 1969. View at Google Scholar
  172. J. Donaldson, T. S. Pierre, J. L. Minnich, and A. Barbeau, “Determination of Na+, K+, Mg2+, Cu2+, Zn2+, and Mn2+ in rat brain regions,” Canadian Journal of Biochemistry, vol. 51, no. 1, pp. 87–92, 1973. View at Google Scholar
  173. T. Weiser and M. Wienrich, “The effects of copper ions on glutamate receptors in cultured rat cortical neurons,” Brain Research, vol. 742, no. 1-2, pp. 211–218, 1996. View at Publisher · View at Google Scholar
  174. V. Vlachová, “Copper modulation of NMDA responses in mouse and rat cultured hippocampal neurons,” European Journal of Neuroscience, vol. 8, no. 11, pp. 2257–2264, 1996. View at Publisher · View at Google Scholar
  175. N. A. Larsen, H. Pakkenberg, E. Damsgaard, and K. Heydorn, “Topographical distribution of arsenic, manganese, and selenium in the normal human brain,” Journal of Neurosurgical Sciences, vol. 42, no. 3, pp. 407–416, 1979. View at Google Scholar
  176. M. L. Mayer and G. L. Westbrook, “Permeation and block of N-methyl-D-aspartic acid receptor channels by divalent cations in mouse cultured central neurones,” Journal of Physiology, vol. 394, pp. 501–527, 1987. View at Google Scholar
  177. T. R. Guilarte and M. K. Chen, “Manganese inhibits NMDA receptor channel function: implications to psychiatric and cognitive effects,” NeuroToxicology, vol. 28, no. 6, pp. 1147–1152, 2007. View at Publisher · View at Google Scholar · View at PubMed
  178. H. Hashemzadeh-Gargari and T. R. Guilarte, “Divalent cations modulate N-methyl-D-aspartate receptor function at the glycine site,” Journal of Pharmacology and Experimental Therapeutics, vol. 290, no. 3, pp. 1356–1362, 1999. View at Google Scholar
  179. Y. Gu and L. Y. M. Huang, “Modulation of glycine affinity for NMDA receptors by extracellular Ca2+ in trigeminal neurons,” Journal of Neuroscience, vol. 14, no. 7, pp. 4561–4570, 1994. View at Google Scholar
  180. M. Marchioro, K. L. Swanson, Y. Aracava, and E. X. Albuquerque, “Glycine- and calcium-dependent effects of lead on N-methyl-D-aspartate receptor function in rat hippocampal neurons,” Journal of Pharmacology and Experimental Therapeutics, vol. 279, no. 1, pp. 143–153, 1996. View at Google Scholar
  181. M. Hollmann and S. Heinemann, “Cloned glutamate receptors,” Annual Review of Neuroscience, vol. 17, pp. 31–108, 1994. View at Google Scholar
  182. S. R. Platt, “The role of glutamate in central nervous system health and disease—a review,” Veterinary Journal, vol. 173, no. 2, pp. 278–286, 2007. View at Publisher · View at Google Scholar · View at PubMed
  183. R. M. Pruss, R. L. Akeson, M. M. Racke, and J. L. Wilburn, “Agonist-activated cobalt uptake identifies divalent cation-permeable kainate receptors on neurons and glial cells,” Neuron, vol. 7, no. 3, pp. 509–518, 1991. View at Publisher · View at Google Scholar
  184. M. Iino, S. Ozawa, and K. Tsuzuki, “Permeation of calcium through excitatory amino acid receptor channels in cultured rat hippocampal neurones,” Journal of Physiology, vol. 424, pp. 151–165, 1990. View at Google Scholar
  185. B. S. Meldrum, “Glutamate as a neurotransmitter in the brain: review of physiology and pathology,” Journal of Nutrition, vol. 130, no. 4, pp. 1007S–1015S, 2000. View at Google Scholar
  186. S. L. Buldakova, K. V. Bolshakov, D. B. Tikhonov, and L. G. Magazanik, “Ca2+-dependent desensitization of AMPA receptors,” NeuroReport, vol. 11, no. 13, pp. 2937–2941, 2000. View at Google Scholar
  187. F. A. Rassendren, P. Lory, J. P. Pin, and J. Nargeot, “Zinc has opposite effects on NMDA and non-NMDA receptors expressed in Xenopus oocytes,” Neuron, vol. 4, no. 5, pp. 733–740, 1990. View at Publisher · View at Google Scholar
  188. J. C. Dreixler and J. P. Leonard, “Subunit-specific enhancement of glutamate receptor responses by zinc,” Molecular Brain Research, vol. 22, no. 1–4, pp. 144–150, 1994. View at Publisher · View at Google Scholar
  189. J. C. Dreixler and J. P. Leonard, “Effects of external calcium on zinc modulation of AMPA receptors,” Brain Research, vol. 752, no. 1-2, pp. 170–174, 1997. View at Publisher · View at Google Scholar
  190. N. A. Dorofeeva, D. B. Tikhonov, O. I. Barygin, T. B. Tikhonova, Y. I. Salnikov, and L. Magazanik, “Action of extracellular divalent cations on native α-amino-3-hydroxy- 5-methylisoxazole-4-propionate (AMPA) receptors,” Journal of Neurochemistry, vol. 95, no. 6, pp. 1704–1712, 2005. View at Publisher · View at Google Scholar · View at PubMed
  191. W. J. Zhu, J. F. Wang, L. Corsi, and S. Vicini, “Lanthanum-mediated modification of GABA(A) receptor deactivation, desensitization and inhibitory synaptic currents in rat cerebellar neurons,” Journal of Physiology, vol. 511, no. 3, pp. 647–661, 1998. View at Publisher · View at Google Scholar
  192. R. W. Olsen and A. J. Tobin, “Molecular biology of GABA(A) receptors,” FASEB Journal, vol. 4, no. 5, pp. 1469–1480, 1990. View at Google Scholar
  193. R. D. Schwartz, “The GABA(A) receptor-gated ion channel: biochemical and pharmacological studies of structure and function,” Biochemical Pharmacology, vol. 37, no. 18, pp. 3369–3375, 1988. View at Google Scholar
  194. W. Sieghart, “Structure and pharmacology of γ-aminobutyric acid(A) receptor subtypes,” Pharmacological Reviews, vol. 47, no. 2, pp. 181–234, 1995. View at Google Scholar
  195. J. Y. Ma and T. Narahashi, “Differential modulation of GABA(A) receptor-channel complex by polyvalent cations in rat dorsal root ganglion neurons,” Brain Research, vol. 607, no. 1-2, pp. 222–232, 1993. View at Google Scholar
  196. A. Barberis, E. Cherubini, and J. W. Mozrzymas, “Zinc inhibits miniature GABAergic currents by allosteric modulation of GABA(A) receptor gating,” Journal of Neuroscience, vol. 20, no. 23, pp. 8618–8627, 2000. View at Google Scholar
  197. E. H. Buhl, T. S. Otis, and I. Mody, “Zinc-induced collapse of augmented inhibition by GABA in a temporal lobe epilepsy model,” Science, vol. 271, no. 5247, pp. 369–373, 1996. View at Google Scholar
  198. P. Legendre and G. L. Westbrook, “Noncompetitive inhibition of γ-aminobutyric acid(A) channels by Zn,” Molecular Pharmacology, vol. 39, no. 3, pp. 267–274, 1991. View at Google Scholar
  199. T. G. Smart, “A novel modulatory binding site for zinc on the GABA(A) receptor complex in cultured rat neurones,” Journal of Physiology, vol. 447, pp. 587–625, 1992. View at Google Scholar
  200. G. Kilic, O. Moran, and E. Cherubini, “Currents activated by GABA and their modulation by Zn2+ in cerebellar granule cells in culture,” European Journal of Neuroscience, vol. 5, no. 1, pp. 65–72, 1993. View at Google Scholar
  201. W. Sieghart, “GABA(A) receptors: ligand-gated Cl- ion channels modulated by multiple drug-binding sites,” Trends in Pharmacological Sciences, vol. 13, no. 12, pp. 446–450, 1992. View at Publisher · View at Google Scholar
  202. A. Draguhn, T. A. Verdorn, M. Ewert, P. H. Seeburg, and B. Sakmann, “Functional and molecular distinction between recombinant rat GABA(A) receptor subtypes by Zn2+,” Neuron, vol. 5, no. 6, pp. 781–788, 1990. View at Publisher · View at Google Scholar
  203. N. C. Saxena and R. L. Macdonald, “Assembly of GABA(A) receptor subunits: role of the δ subunit,” Journal of Neuroscience, vol. 14, no. 11, pp. 7077–7086, 1994. View at Google Scholar
  204. J. L. Fisher and R. L. Macdonald, “The role of an α subtype M2-M3 his in regulating inhibition of GABA(A) receptor current by zinc and other divalent cations,” Journal of Neuroscience, vol. 18, no. 8, pp. 2944–2953, 1998. View at Google Scholar
  205. N. C. Saxena and R. L. Macdonald, “Properties of putative cerebellar γ-aminobutyric acidA receptor isoforms,” Molecular Pharmacology, vol. 49, no. 3, pp. 567–579, 1996. View at Google Scholar
  206. F. Knoflach, D. Benke, Y. Wang et al., “Pharmacological modulation of the diazepam-insensitive recombinant γ- aminobutyric acid(A) receptors α4β2γ2 and α6β2γ2,” Molecular Pharmacology, vol. 50, no. 5, pp. 1253–1261, 1996. View at Google Scholar
  207. G. White and D. A. Gurley, “α subunits influence Zn block of γ2 containing GABA(A) receptor currents,” NeuroReport, vol. 6, no. 3, pp. 461–464, 1995. View at Google Scholar
  208. S. J. Moss and T. G. Smart, “Constructing inhibitory synapses,” Nature Reviews Neuroscience, vol. 2, no. 4, pp. 240–250, 2001. View at Publisher · View at Google Scholar · View at PubMed
  209. I. N. Sharonova, V. S. Vorobjev, and H. L. Haas, “High-affinity copper block of GABAA receptor-mediated currents in acutely isolated cerebellar Purkinje cells of the rat,” European Journal of Neuroscience, vol. 10, no. 2, pp. 522–528, 1998. View at Google Scholar
  210. P. Q. Trombley and G. M. Shepherd, “Differential modulation by zinc and copper of amino acid receptors from rat olfactory bulb neurons,” Journal of Neurophysiology, vol. 76, no. 4, pp. 2536–2546, 1996. View at Google Scholar
  211. B. Barilà, A. Cupello, and M. Robello, “Modulation by lanthanum ions of γ-aminobutyric acidA receptors of rat cerebellum granule cells in culture: clues on their subunit composition,” Neuroscience Letters, vol. 298, no. 1, pp. 13–16, 2001. View at Publisher · View at Google Scholar
  212. A. A. Boldyreva, “Lanthanum potentiates GABA-activated currents in rat pyramidal neurons of CA1 hippocampal field,” Bulletin of Experimental Biology and Medicine, vol. 140, no. 4, pp. 403–405, 2005. View at Publisher · View at Google Scholar
  213. N. C. Saxena, T. R. Neelands, and R. L. Macdonald, “Contrasting actions of lanthanum on different recombinant γ- aminobutyric acid receptor isoforms expressed in l929 fibroblasts,” Molecular Pharmacology, vol. 51, no. 2, pp. 328–335, 1997. View at Google Scholar
  214. O. Arakawa, M. Nakahiro, and T. Narahashi, “Mercury modulation of GABA-activated chloride channels and non-specific cation channels in rat dorsal root ganglion neurons,” Brain Research, vol. 551, no. 1-2, pp. 58–63, 1991. View at Google Scholar
  215. K. Krüger, V. Diepgrond, M. Ahnefeld et al., “Blockade of glutamatergic and GABAergic receptor channels by trimethyltin chloride,” British Journal of Pharmacology, vol. 144, no. 2, pp. 283–292, 2005. View at Publisher · View at Google Scholar · View at PubMed
  216. G. A. Wasserman, X. Liu, F. Parvez et al., “Water arsenic exposure and children's intellectual function in Araihazar, Bangladesh,” Environmental Health Perspectives, vol. 112, no. 13, pp. 1329–1333, 2004. View at Publisher · View at Google Scholar
  217. J. Calderón, M. E. Navarro, M. E. Jimenez-Capdeville et al., “Exposure to arsenic and lead and neuropsychological development in Mexican children,” Environmental Research, vol. 85, no. 2, pp. 69–76, 2001. View at Publisher · View at Google Scholar · View at PubMed
  218. S. G. Gilbert and B. Weiss, “A rationale for lowering the blood lead action level from 10 to 2 μg/dL,” NeuroToxicology, vol. 27, no. 5, pp. 693–701, 2006. View at Publisher · View at Google Scholar · View at PubMed
  219. M. M. Téllez-Rojo, D. C. Bellinger, C. Arroyo-Quiroz et al., “Longitudinal associations between blood lead concentrations lower than 10 μg/dL and neurobehavioral development in environmentally exposed children in Mexico City,” Pediatrics, vol. 118, no. 2, pp. e323–e330, 2006. View at Publisher · View at Google Scholar · View at PubMed
  220. D. O. Carpenter, “Effects of metals on the nervous system of humans and animals,” International Journal of Occupational Medicine and Environmental Health, vol. 14, no. 3, pp. 209–218, 2001. View at Google Scholar
  221. B. Platt, D. O. Carpenter, D. Busselberg, K. G. Reymann, and G. Riedel, “Aluminum impairs hippocampal long-term potentiation in rats in vitro and in vivo,” Experimental Neurology, vol. 134, no. 1, pp. 73–86, 1995. View at Publisher · View at Google Scholar · View at PubMed
  222. J. Chen, M. Wang, D. Ruan, and J. She, “Early chronic aluminium exposure impairs long-term potentiation and depression to the rat dentate gyrus in vivo,” Neuroscience, vol. 112, no. 4, pp. 879–887, 2002. View at Publisher · View at Google Scholar
  223. S. S. Ahmed and W. Santosh, “Metallomic profiling and linkage map analysis of early Parkinson's disease: a new insight to aluminum marker for the possible diagnosis,” PloS One, vol. 5, no. 6, Article ID e11252, 2010. View at Publisher · View at Google Scholar · View at PubMed
  224. C. R. Raymond, “LTP forms 1, 2 and 3: different mechanisms for the 'long' in long-term potentiation,” Trends in Neurosciences, vol. 30, no. 4, pp. 167–175, 2007. View at Publisher · View at Google Scholar · View at PubMed
  225. K. G. Reymann and J. U. Frey, “The late maintenance of hippocampal LTP: requirements, phases, 'synaptic tagging', ‘late-associativity’ and implications,” Neuropharmacology, vol. 52, no. 1, pp. 24–40, 2007. View at Publisher · View at Google Scholar · View at PubMed
  226. Z. Xia and D. R. Storm, “The role of calmodulin as a signal integrator for synaptic plasticity,” Nature Reviews Neuroscience, vol. 6, no. 4, pp. 267–276, 2005. View at Publisher · View at Google Scholar · View at PubMed
  227. E. Miyamoto, “Molecular mechanism of neuronal plasticity: induction and maintenance of long-term potentiation in the hippocampus,” Journal of Pharmacological Sciences, vol. 100, no. 5, pp. 433–442, 2006. View at Publisher · View at Google Scholar
  228. Y. Izumi, K. Tokuda, and C. F. Zorumski, “Long-term potentiation inhibition by low-level N-methyl-D-aspartate receptor activation involves calcineurin, nitric oxide, and p38 mitogen-activated protein kinase,” Hippocampus, vol. 18, no. 3, pp. 258–265, 2008. View at Publisher · View at Google Scholar · View at PubMed
  229. G. M. Thomas and R. L. Huganir, “MAPK cascade signalling and synaptic plasticity,” Nature Reviews Neuroscience, vol. 5, no. 3, pp. 173–183, 2004. View at Google Scholar
  230. L. Prichard, J. C. Deloulme, and D. R. Storm, “Interactions between neurogranin and calmodulin in vivo,” Journal of Biological Chemistry, vol. 274, no. 12, pp. 7689–7694, 1999. View at Publisher · View at Google Scholar
  231. J. Baudier, J. C. Deloulme, A. Van Dorsselaer, D. Black, and H. W. D. Matthes, “Purification and characterization of a brain-specific protein kinase C substrate, neurogranin (p17). Identification of a consensus amino acid sequence between neurogranin and neuromodulin (GAP43) that corresponds to the protein kinase C phosphorylation site and the calmodulin-binding domain,” Journal of Biological Chemistry, vol. 266, no. 1, pp. 229–237, 1991. View at Google Scholar
  232. E. Habermann, K. Crowell, and P. Janicki, “Lead and other metals can substitute for Ca2+ in calmodulin,” Archives of Toxicology, vol. 54, no. 1, pp. 61–70, 1983. View at Google Scholar
  233. G. M. J. Ramakers, P. Pasinelli, J. J. H. Hens, W. H. Gispen, and P. N. E. De Graan, “Protein kinase C in synaptic plasticity: changes in the in situ phosphorylation state of identified pre- and postsynaptic substrates,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 21, no. 3, pp. 455–486, 1997. View at Publisher · View at Google Scholar
  234. J. D. Cremin Jr. and D. R. Smith, “In vitro vs in vivo Pb effects on brain protein kinase C activity,” Environmental Research, vol. 90, no. 3, pp. 191–199, 2002. View at Publisher · View at Google Scholar
  235. S. J. R. Lee, Y. Escobedo-Lozoya, E. M. Szatmari, and R. Yasuda, “Activation of CaMKII in single dendritic spines during long-term potentiation,” Nature, vol. 458, no. 7236, pp. 299–304, 2009. View at Publisher · View at Google Scholar · View at PubMed
  236. R. V. Omkumar, M. J. Kiely, A. J. Rosenstein, K. T. Min, and M. B. Kennedy, “Identification of a phosphorylation site for calcium/calmodulin- dependent protein kinase II in the NR2B subunit of the N-methyl-D-aspartate receptor,” Journal of Biological Chemistry, vol. 271, no. 49, pp. 31670–31678, 1996. View at Publisher · View at Google Scholar
  237. R. C. Malenka and R. A. Nicoll, “Long-term potentiation—a decade of progress?” Science, vol. 285, no. 5435, pp. 1870–1874, 1999. View at Publisher · View at Google Scholar
  238. K. A. Anderson and C. D. Kane, “Ca2+/calmodulin-dependent protein kinase IV and calcium signaling,” BioMetals, vol. 11, no. 4, pp. 331–343, 1998. View at Publisher · View at Google Scholar
  239. B. Mayer, M. John, B. Heinzel et al., “Brain nitric oxide synthase is a biopterin- and flavin-containing multi-functional oxido-reductase,” FEBS Letters, vol. 288, no. 1-2, pp. 187–191, 1991. View at Publisher · View at Google Scholar
  240. M. J. Lohse, U. Forstermann, and H. H. H. W. Schmidt, “Pharmacology of NO: cGMP signal transduction,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 358, no. 1, pp. 111–112, 1998. View at Publisher · View at Google Scholar
  241. H. Prast and A. Philippu, “Nitric oxide as modulator of neuronal function,” Progress in Neurobiology, vol. 64, no. 1, pp. 51–68, 2001. View at Publisher · View at Google Scholar
  242. Y. F. Lu, E. R. Kandel, and R. D. Hawkins, “Nitric oxide signaling contributes to late-phase LTP and CREB phosphorylation in the hippocampus,” Journal of Neuroscience, vol. 19, no. 23, pp. 10250–10261, 1999. View at Google Scholar
  243. Y. Keshet and R. Seger, “The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions,” Methods in Molecular Biology, vol. 661, pp. 3–38, 2010. View at Google Scholar
  244. C. D. Toscano, J. L. McGlothan, and T. R. Guilarte, “Lead exposure alters cyclic-AMP response element binding protein phosphorylation and binding activity in the developing rat brain,” Developmental Brain Research, vol. 145, no. 2, pp. 219–228, 2003. View at Publisher · View at Google Scholar
  245. B. E. Lonze and D. D. Ginty, “Function and regulation of CREB family transcription factors in the nervous system,” Neuron, vol. 35, no. 4, pp. 605–623, 2002. View at Publisher · View at Google Scholar
  246. J. C. Chrivia, R. P. S. Kwok, N. Lamb, M. Hagiwara, M. R. Montminy, and R. H. Goodman, “Phosphorylated CREB binds specifically to the nuclear protein CBP,” Nature, vol. 365, no. 6449, pp. 855–859, 1993. View at Publisher · View at Google Scholar · View at PubMed
  247. K. Deisseroth, H. Bito, and R. W. Tsien, “Signaling from synapse to nucleus: postsynaptic CREB phosphorylation during multiple forms of hippocampal synaptic plasticity,” Neuron, vol. 16, no. 1, pp. 89–101, 1996. View at Publisher · View at Google Scholar
  248. G. E. Hardingham and H. Bading, “The Yin and Yang of NMDA receptor signalling,” Trends in Neurosciences, vol. 26, no. 2, pp. 81–89, 2003. View at Publisher · View at Google Scholar
  249. M. R. Montminy and L. M. Bilezikjian, “Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene,” Nature, vol. 328, no. 6126, pp. 175–178, 1987. View at Google Scholar
  250. A. J. Silva, J. H. Kogan, P. W. Frankland, and S. Kida, “CREB and memory,” Annual Review of Neuroscience, vol. 21, pp. 127–148, 1998. View at Publisher · View at Google Scholar · View at PubMed
  251. V. Y. Bolshakov, L. Carboni, M. H. Cobb, S. A. Siegelbaum, and F. Belardetti, “Dual MAP kinase pathways mediate opposing forms of long-term plasticity at CA3-CA1 synapses,” Nature Neuroscience, vol. 3, no. 11, pp. 1107–1112, 2000. View at Publisher · View at Google Scholar · View at PubMed
  252. L. G. Costa, M. Aschner, A. Vitalone, T. Syversen, and O. P. Soldin, “Developmental neuropathology of environmental agents,” Annual Review of Pharmacology and Toxicology, vol. 44, pp. 87–110, 2004. View at Publisher · View at Google Scholar · View at PubMed
  253. S. Cull-Candy, S. Brickley, and M. Farrant, “NMDA receptor subunits: diversity, development and disease,” Current Opinion in Neurobiology, vol. 11, no. 3, pp. 327–335, 2001. View at Publisher · View at Google Scholar
  254. Y. Z. Xu, D. Y. Ruan, Y. Wu et al., “Nitric oxide affects LTP in area CA1 and CA3 of hippocampus in low-level lead-exposed rat,” Neurotoxicology and Teratology, vol. 20, no. 1, pp. 69–73, 1998. View at Publisher · View at Google Scholar
  255. L. Altmann, F. Weinsberg, K. Sveinsson, H. Lilienthal, H. Wiegand, and G. Winneke, “Impairment of long-term potentiation and learning following chronic lead exposure,” Toxicology Letters, vol. 66, no. 1, pp. 105–112, 1993. View at Publisher · View at Google Scholar
  256. J. Zhong, D. P. Carrozza, K. Williams, D. B. Pritchett, and P. B. Molinoff, “Expression of mRNAs encoding subunits of the NMDA receptor in developing rat brain,” Journal of Neurochemistry, vol. 64, no. 2, pp. 531–539, 1995. View at Google Scholar
  257. L. R.F. Faro, R. Durán, J. L.M. Do Nascimento, M. Alfonso, and C. W. Picanço-Diniz, “Effects of methyl mercury on the in vivo release of dopamine and its acidic metabolites DOPAC and HVA from striatum of rats,” Ecotoxicology and Environmental Safety, vol. 38, no. 2, pp. 95–98, 1997. View at Publisher · View at Google Scholar · View at PubMed
  258. M. Stýblo, Z. Drobná, I. Jaspers, S. Lin, and D. J. Thomas, “The role of biomethylation in toxicity and carcinogenicity of arsenic: a research update,” Environmental Health Perspectives, vol. 110, supplement 5, pp. 767–771, 2002. View at Google Scholar
  259. J. S. Thayer, “Biological methylation of less-studied elements,” Applied Organometallic Chemistry, vol. 16, no. 12, pp. 677–691, 2002. View at Publisher · View at Google Scholar
  260. B. Platt and D. Busselberg, “Combined actions of Pb2+, Zn2+, and Al3+ on voltage-activated calcium channel currents,” Cellular and Molecular Neurobiology, vol. 14, no. 6, pp. 831–840, 1994. View at Publisher · View at Google Scholar
  261. M. Vigeh, K. Yokoyama, Z. Seyedaghamiri et al., “Blood lead at currently acceptable levels may cause preterm labour,” Occupational and Environmental Medicine, vol. 68, no. 3, pp. 231–234, 2011. View at Publisher · View at Google Scholar · View at PubMed