Table of Contents Author Guidelines Submit a Manuscript
Journal of Toxicology
Volume 2012, Article ID 852384, 10 pages
http://dx.doi.org/10.1155/2012/852384
Review Article

Cutting Edge PBPK Models and Analyses: Providing the Basis for Future Modeling Efforts and Bridges to Emerging Toxicology Paradigms

1National Center for Environmental Assessment Office of Research and Development, U.S. Environmental Protection Agency, 1200 Pennsylvania Avenue, Washington, DC 20460, USA
2National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
3Department of Occupational and Environmental Health, Université de Montréal, Montreal, QC, Canada H3C 3J7

Received 9 April 2012; Accepted 21 June 2012

Academic Editor: Jack Ng

Copyright © 2012 Jane C. Caldwell et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Reddy, H. J. Clewell, M. E. Andersen, and R. S. H. Yang, Physiologically-Based Pharmacokinetic Modeling: Science and Applications, Wiley Inter-Science, 2005.
  2. K. Krishnan, G. D. Loizou, M. Spendiff, J. C. Lipscomb, and M. E. Andersen, “PBPK modeling: a primer,” in Quantitative Modeloint in Toxicology, K. Krishnan and M. E. Andersen, Eds., pp. P21–P58, John Wiley & Sons, Chichester, UK, 2010. View at Google Scholar
  3. J. N. Blancato, M. V. Evans, F. R. Power, and J. C. Caldwell, “Development and use of PBPK modeling and the impact of metabolism on variability in dose metrics for the risk assessment of methyl tertiary butyl ether (MTBE),” Journal of Environmental Protection, vol. 1, pp. 29–51, 2008. View at Google Scholar
  4. J. D. Scheff, S. E. Calvano, S. F. Lowry, and I. P. Androulakis, “Modeling the influence of circadian rhythms on the acute inflammatory response,” Journal of Theoretical Biology, vol. 264, no. 3, pp. 1068–1076, 2010. View at Publisher · View at Google Scholar
  5. K. Krishnan and M. E. Andersen, “Physiologically-based pharmacokinetic and toxicokinetic modeling,” in Principles and Methods in Toxicology, A. Wallace Hayes, Ed., pp. 232–291, Taylor and Francis, New York, NY, USA, 2007. View at Google Scholar
  6. H. A. Barton, W. A. Chiu, R. W. Setzer et al., “Characterizing uncertainty and variability in physiologically-based pharmacokinetic (PBPK) models: state of the science and needs for research and implementation,” Toxicological Sciences, vol. 99, no. 2, pp. 395–402, 2007. View at Google Scholar
  7. World Health Organization (WHO), Characterization and Application of Physiologically Based Pharmacokinetic Models in Risk Assessment, World Health Organization, International Programme on Chemical Safety, Geneva, Switzerland, 2010.
  8. E. D. McLanahan, H. El-Masri, L. M. Sweeney et al., “Physiologically based pharmacokinetic model use in risk assessment—why being published is not enough,” Toxicological Sciences, vol. 126, no. 1, pp. 5–15, 2012. View at Google Scholar
  9. U.S. EPA, “Approaches for the application of physiologically based pharmacokinetic (PBPK) models and supporting data in risk assessment,” Final Report EPA/600/R-05/043A, US Environmental Protection Agency, Washington, DC, USA, 2006. View at Google Scholar
  10. W. A. Chiu, H. A. Barton, R. S. DeWoskin et al., “Evaluation of physiologically based pharmacokinetic models for use in risk assessment,” Journal of Applied Toxicology, vol. 27, no. 3, pp. 218–237, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Anastas, Written testimony by EPA’s Assistant Administrator for Research and Development for hearing on EPA’s Integrated Risk Information System before the U.S. House of Representatives, Committee on Energy and Commerce, Subcommittee on Environment and Economy, 2011, http://republicans.energycommerce.house.gov/Media/file/Hearings/Environment/100611/Anastas.pdf.
  12. M. L. Gargas, M. E. Andersen, and H. J. Clewell III, “A physiologically based simulation approach for determining metabolic constants from gas uptake data,” Toxicology and Applied Pharmacology, vol. 86, no. 3, pp. 341–352, 1986. View at Google Scholar · View at Scopus
  13. M. E. Andersen, H. J. Clewell III, M. L. Gargas, F. A. Smith, and R. H. Reitz, “Physiologically based pharmacokinetics and the risk assessment process for methylene chloride,” Toxicology and Applied Pharmacology, vol. 87, no. 2, pp. 185–205, 1987. View at Google Scholar · View at Scopus
  14. M. V. Evans and J. C. Caldwell, “Evaluation of two different metabolic hypotheses for dichloromethane toxicity using physiologically based pharmacokinetic modeling for in vivo inhalation gas uptake data exposure in female B6C3F1 mice,” Toxicology and Applied Pharmacology, vol. 244, no. 3, pp. 280–290, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. M. V. Evans and J. C. Caldwell, “Response to letter to the Editor by Anders et al,” Toxicology and Applied Pharmacology, vol. 248, no. 1, pp. 65–67, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. U.S. EPA, “Toxicological review of trichloroethylene,” CAS 79-01-6, In Support of Summary Information on the Integrated Risk Information System (IRIS), 2011. View at Google Scholar
  17. W. A. Chiu, M. S. Okino, and M. V. Evans, “Characterizing uncertainty and population variability in the toxicokinetics of trichloroethylene and metabolites in mice, rats, and humans using an updated database, physiologically based pharmacokinetic (PBPK) model, and Bayesian approach,” Toxicology and Applied Pharmacology, vol. 241, no. 1, pp. 36–60, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. M. V. Evans, W. A. Chiu, M. S. Okino, and J. C. Caldwell, “Development of an updated PBPK model for trichloroethylene and metabolites in mice, and its application to discern the role of oxidative metabolism in TCE-induced hepatomegaly,” Toxicology and Applied Pharmacology, vol. 236, no. 3, pp. 329–340, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. M. W. Anders, M. E. Andersen, H. J. Clewell III, M. L. Gargas, F. P. Guengerich, and R. H. Reitz, “Evaluation of two different metabolic hypotheses for dichloromethane toxicity using physiologically based pharmacokinetic modeling of in vivo gas uptake data exposure in female B6C3F1 mice,” Toxicology and Applied Pharmacology, vol. 248, no. 1, pp. 63–64, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. Health Canada, “Human health risk assessment for inhaled manganese—Results of public comments: major comments and responses, 2008,” http://www.hc-sc.gc.ca/ewh-semt/consult/-2008/manganese/result-eng.php.
  21. OEHHA and California EPA, Reference exposure levels for acrolein, acetaldehyde, arsenic, mercury, manganese, and formaldehyde, 2008, http://oehha.ca.gov/air/hot_spots/2008/AppendixD1_final.pdf.
  22. ATSDR, “Toxicological profile for manganese,” draft for public comments period ended on February 26, 2009, 2008, http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=102&tid=23.
  23. C. Lu, C. M. Holbrook, and L. M. Andres, “The implications of using a physiologically based pharmacokinetic (PBPK) model for pesticide risk assessment,” Environmental Health Perspectives, vol. 118, no. 1, pp. 125–130, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. C. M. Thompson, B. Sonawane, H. A. Barton et al., “Approaches for applications of physiologically based pharmacokinetic models in risk assessment,” Journal of Toxicology and Environmental Health B, vol. 11, no. 7, pp. 519–547, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. R. S. Judson, H. M. Mortensen, I. Shah, T. B. Knudsen, and F. Elloumi, “Using pathway modules as targets for assay development in xenobiotic screening,” Molecular BioSystems, vol. 8, no. 2, pp. 531–542, 2012. View at Google Scholar
  26. N. C. Kleinstreuer, R. S. Judson, D. M. Reif et al., “Environmental impact on vascular development predicted by high-throughput screening,” Environmental Health Perspectives, vol. 119, no. 11, pp. 1596–1603, 2011. View at Google Scholar
  27. A. A. Margolin and A. Califano, “Theory and limitations of genetic network inference from microarray data,” Annals of the New York Academy of Sciences, vol. 1115, pp. 51–72, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Imura, K. Kashima, M. Kusano, and T. Morohoshi, “Peicewise affine systems approach to control of biological networks,” Philosophical Transactions A, vol. 368, no. 1930, pp. 4977–4993, 2010. View at Google Scholar
  29. J. DeJongh, A. Forsby, J. B. Houston, M. Beckman, R. Combes, and B. J. Blaauboer, “An integrated approach to the prediction of systemic toxicity using computer-based biokinetic models and biological in vitro test methods: overview of a prevalidation study based on the ECITTS,” Toxicology in Vitro, vol. 13, no. 4-5, pp. 549–554, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. B. J. Blaauboer, “The integration of data on physico-chemical properties, in vitro-derived toxicity data and physiologically based kinetic and dynamic as modelling a tool in hazard and risk assessment. A commentary,” Toxicology Letters, vol. 138, no. 1-2, pp. 161–171, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. B. J. Blaauboer and M. E. Andersen, “The need for a new toxicity testing and risk analysis paradigm to implement REACH or any other large scale testing initiative,” Archives of Toxicology, vol. 81, no. 5, pp. 385–387, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Forsby and B. Blaauboer, “Integration of in vitro neurotoxicity data with biokinetic modelling for the estimation of in vivo neurotoxicity,” Human and Experimental Toxicology, vol. 26, no. 4, pp. 333–338, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Louisse, E. de Jong, J. J. M. van de Sandt et al., “The use of in vitro toxicity data and physiologically based kinetic modeling to predict dose-response curves for in vivo developmental toxicity of glycol ethers in rat and man,” Toxicological Sciences, vol. 118, no. 2, pp. 470–484, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. A. N. Edginton, G. Ahr, S. Willmann, and H. Stass, “Defining the role of macrophages in local moxifloxacin tissue concentrations using biopsy data and Whole-body physiologically based pharmacokinetic modelling,” Clinical Pharmacokinetics, vol. 48, no. 3, pp. 181–187, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. W. Schmitt, “General approach for the calculation of tissue to plasma partition coefficients,” Toxicology in Vitro, vol. 22, no. 2, pp. 457–467, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. T. Peyret and K. Krishnan, “QSARs for PBPK modelling of environmental contaminants,” SAR and QSAR in Environmental Research, vol. 22, no. 1-2, pp. 129–169, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Poulin and K. Krishnan, “A biologically-based algorithm for predicting human tissue: blood partition coefficients of organic chemicals,” Human and Experimental Toxicology, vol. 14, no. 3, pp. 273–280, 1995. View at Google Scholar · View at Scopus
  38. P. Poulin and K. Krishnan, “Molecular structure-based prediction of the partition coefficients of organic chemicals for physiological pharmacokinetic models,” Toxicology Methods, vol. 6, no. 3, pp. 117–137, 1996. View at Google Scholar · View at Scopus
  39. T. Rodgers, D. Leahy, and M. Rowland, “Tissue distribution of basic drugs: accounting for enantiomeric, compound and regional differences amongst β-blocking drugs in rat,” Journal of Pharmaceutical Sciences, vol. 94, no. 6, pp. 1237–1248, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Rodgers and M. Rowland, “Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions,” Journal of Pharmaceutical Sciences, vol. 95, no. 6, pp. 1238–1257, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Peyret, P. Poulin, and K. Krishnan, “A unified algorithm for predicting partition coefficients for PBPK modeling of drugs and environmental chemicals,” Toxicology and Applied Pharmacology, vol. 249, no. 3, pp. 197–207, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. M. D. Thompson and D. A. Beard, “Physiologically based pharmacokinetic tissue compartment model selection in drug development and risk assessment,” Journal of Pharmaceutical Sciences, vol. 101, no. 1, pp. 424–435, 2012. View at Publisher · View at Google Scholar
  43. J. C. Lipscomb, J. W. Fisher, P. D. Confer, and J. Z. Byczkowski, “In vitro to in vivo extrapolation for trichloroethylene metabolism in humans,” Toxicology and Applied Pharmacology, vol. 152, no. 2, pp. 376–387, 1998. View at Publisher · View at Google Scholar · View at Scopus
  44. P. Poulin, J. R. Kenny, C. E. Hop, and S. Haddad, “In vitro-in vivo extrapolation of clearance: modeling hepatic metabolic clearance of highly bound drugs and comparative assessment with existing calculation methods,” Journal of Pharmaceutical Sciences, vol. 101, no. 2, pp. 838–851, 2012. View at Publisher · View at Google Scholar
  45. D. M. Rotroff, B. A. Wetmore, D. J. Dix et al., “Incorporating human dosimetry and exposure into high-throughput in vitro toxicity screening,” Toxicological Sciences, vol. 117, no. 2, pp. 348–358, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. B. A. Wetmore, J. F. Wambaugh, S. S. Ferguson et al., “Integration of dosimetry, exposure, and high-throughput screening data in chemical toxicity assessment,” Toxicological Sciences, vol. 125, no. 1, pp. 157–174, 2012. View at Google Scholar
  47. H. J. Clewell and M. E. Andersen, “Applying mode-of-action and pharmacokinetic considerations in contemporary cancer risk assessments: an example with trichloroethylene,” Critical Reviews in Toxicology, vol. 34, no. 5, pp. 385–445, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. S. H. Moolgavkar, “Biologically motivated two-stage model for cancer risk assessment,” Toxicology Letters, vol. 43, no. 1–3, pp. 139–150, 1988. View at Google Scholar · View at Scopus
  49. K. S. Crump, C. Chen, W. A. Chiu et al., “What role for biologically based dose-response models in estimating low-dose risk?” Environmental Health Perspectives, vol. 118, no. 5, pp. 585–588, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. N. S. Luke, R. Sams, M. J. DeVito, R. B. Conolly, and H. A. El-Masri, “Development of a quantitative model incorporating key events in a hepatotoxic mode of action to predict tumor incidence,” Toxicological Sciences, vol. 115, no. 1, pp. 253–266, 2010. View at Publisher · View at Google Scholar · View at Scopus