Table of Contents Author Guidelines Submit a Manuscript
Journal of Toxicology
Volume 2013, Article ID 870628, 9 pages
http://dx.doi.org/10.1155/2013/870628
Research Article

Expression of Glutathione Peroxidase and Glutathione Reductase and Level of Free Radical Processes under Toxic Hepatitis in Rats

1Department of Medical Biochemistry and Microbiology, Voronezh State University, University Square 1, Voronezh 394006, Russia
2ISOPlexis Gene Bank, University of Madeira, Campus da Penteada, 9000-390 Funchal, Portugal

Received 28 September 2012; Revised 31 January 2013; Accepted 6 February 2013

Academic Editor: JeanClare Seagrave

Copyright © 2013 Igor Y. Iskusnykh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Archakov and I. Karuzina, “Oxidation of foreign compounds and toxicology problems,” Vestnik Akademii Medizinskih Nunk SSSR, vol. 1, pp. 14–24, 1988. View at Google Scholar
  2. N. Zenkov, LankinV, and E. Menshikov, Oxidative Stress. Biochemicals and Pathophysiologicals Aspects, MAIK, Moscow, Russia, 2001.
  3. S. S. Popov, A. N. Pashkov, T. N. Popova, A. V. Semenikhina, and T. I. Rakhmanova, “Melatonin as a corrector of free radical oxidation processes during toxic damage of liver in rat,” Eksperimental'naya i Klinicheskaya Farmakologiya, vol. 70, no. 1, pp. 48–51, 2007. View at Google Scholar · View at Scopus
  4. P. Gulak, A. Dudchenko, and V. Zaycev, Hepatocyte: The Functional and Metabolic Properties, Moscow, Russia, 1985.
  5. A. N. Pashkov, S. S. Popov, A. V. Semenikhina, and T. I. Rakhmanova, “Glutathione system state and activity of some NADPH-producing enzymes in rats liver under melatonin action at norm and toxic hepatitis,” Bulletin of Experimental Biology and Medicine, vol. 139, no. 5, pp. 520–524, 2005. View at Google Scholar
  6. O. Kartashova and A. Blyuger, “Simulation of pathological processes in the liver,” Riga: Zvaygzne, p. 180, 1975. View at Google Scholar
  7. Y. Kaurov, G. Boyarinov, and V. Smirnov, “How to create a model of hepatitis and cirrhosis of the liver of mammals, Federal service on intellectual property, patent and trade marks,” 1996, Patent 94026117 RF, MKI G09B23/28, http://www.fips.ru/cdfi/Fips2009.dll/CurrDoc?SessionKey=I26EHSFA6CX7DRO1LN5J&GotoDoc=1&Query=1.
  8. V. Sidorova, Z. Ryabinin, and E. Leikin, Liver Regeneration in Mammals, Medicine, Leningrad Branch, Leningrad, Russia, 1966.
  9. N. Fedorova, State of the system of glutathione peroxidase-glutathione reductase in the stimulated to regenerate body and its role in cell proliferation [Ph.D. thesis], Library of Voronezh State University, 1999.
  10. I. D. Stalnaya, Modern Methods in Biochemistry, Orekhovich V.N. Pub. Medicine, Moscow, Russia, 1977.
  11. M. W. Pfaffl, G. W. Horgan, and L. Dempfle, “Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR,” Nucleic Acids Research, vol. 30, no. 9, article e36, 2002. View at Google Scholar · View at Scopus
  12. S. Lapach, A. Chubenko, and P. Babich, Statistical Methods in Biomedical Research Using Excel Software, Morion, Kiev, Russia, 2001.
  13. K. Storey, “Oxidative stress: animal adaptations in nature,” Brazilian Journal of Medical and Biological Research, vol. 29, pp. 1715–1733, 1996. View at Google Scholar
  14. S. Orrenius, D. J. McConkey, G. Bellomo, and P. Nicotera, “Role of Ca2+ in toxic cell killing,” Trends in Pharmacological Sciences, vol. 10, no. 7, pp. 281–285, 1989. View at Google Scholar · View at Scopus
  15. M. D. Geeraerts, M. F. Ronveaux-Dupal, J. J. Lemasters, and B. Herman, “Cytosolic free Ca2+ and proteolysis in lethal oxidative injury in endothelial cells,” American Journal of Physiology, vol. 261, no. 5, pp. C889–C896, 1991. View at Google Scholar · View at Scopus
  16. A. Bindoli, “Lipid peroxidation in mitochondria,” Free Radical Biology and Medicine, vol. 5, no. 4, pp. 247–261, 1988. View at Google Scholar · View at Scopus
  17. Y. Kunio, S. Komura, N. Komura, H. Abe, H. Konishi, and S. Arichi, “Serum lipid peroxide levels in rats with inherited cataracts,” Journal of Applied Physiology, vol. 7, pp. 202–206, 1985. View at Google Scholar
  18. C. R. Wade, P. G. Jackson, J. Highton, and A. M. Van Rij, “Lipid peroxidation and malondialdehyde in the synovial fluid and plasma of patients with rheumatoid arthritis,” Clinica Chimica Acta, vol. 164, no. 3, pp. 245–250, 1987. View at Google Scholar · View at Scopus
  19. B. Halliwell and J. Gutteridge, Free Radicals in Biology and Medicine, Clarendon Press, Oxford, UK, 1989.
  20. A. Jain, I. Rieger, M. Rohr, and A. Schrader, “Antioxidant efficacy on human skin in vivo investigated by UVA-induced chemiluminescence decay analysis via induced chemiluminescence of human skin,” Skin Pharmacology and Physiology, vol. 23, no. 5, pp. 266–272, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Lukaszewicz-Hussain and J. Moniuszko-Jakoniuk, “Liver catalase, glutathione peroxidase and reductase activity, reduced glutathione and hydrogen peroxide levels in acute intoxication with chlorfenvinphos, an organophosphate insecticide,” Polish Journal of Environmental Studies, vol. 13, no. 3, pp. 303–309, 2004. View at Google Scholar
  22. A. Alhassan, M. Sule, S. Aliyu, and M. Aliyu, “Ideal hepatotoxicity model in rats using Carbon Tetrachloride (CCl4),” Bayero Journal of Pure and Applied Sciences, vol. 2, no. 2, pp. 185–187, 2009. View at Google Scholar
  23. G. A. Clawson, “Mechanisms of carbon tetrachloride hepatotoxicity,” Pathology and Immunopathology Research, vol. 8, pp. 104–112, 1989. View at Google Scholar
  24. R. O. Recknagel, E. A. Glende, J. A. Dolak, and R. L. Waller, “Mechanisms of carbon tetrachloride toxicity,” Pharmacology and Therapeutics, vol. 43, no. 1, pp. 139–154, 1989. View at Google Scholar · View at Scopus
  25. H. S. Lee, L. Li, H. K. Kim et al., “The protective effects of Curcuma longa linn. extract on carbon tetrachloride-induced hepatotoxicity in rats via upregulation of Nrf2,” Journal of Microbiology and Biotechnology, vol. 20, no. 9, pp. 1331–1338, 2010. View at Google Scholar
  26. G. M. Adamson and R. E. Billings, “Tumor necrosis factor induced oxidative stress in isolated mouse hepatocytes,” Archives of Biochemistry and Biophysics, vol. 294, pp. 223–229, 1992. View at Google Scholar
  27. A. Gruebele, K. Zawaski, and D. Kaplan, “Cytochrome P4502E1- and cytochrome P4502B1/2B2-catalyzed carbon tetrachloride metabolism: effects on signal transduction as demonstrated by altered immediate-early (c-Fos and c-Jun) gene expression and nuclear AP-1 and NF-kappa B transcription factor levels,” Drug Metabolism and Disposition, vol. 24, no. 1, pp. 15–22, 1996. View at Google Scholar
  28. Z.-Z. Chen, Z.-L. Wang, and Y. C. - Deng, “(Z)-5-(4-methoxybenzylidene)thiazolidine-2,4-dione protects rats from carbon tetrachloride-induced liver injury and fibrogenesis,” World Journal of Gastroenterology, vol. 18, no. 7, pp. 654–661, 2012. View at Google Scholar
  29. Y. Huang, W. Li, and A. N. T. Kong, “Anti-oxidative stress regulator NF-E2-related factor 2 mediates the adaptive induction of antioxidant and detoxifying enzymes by lipid peroxidation metabolite 4-hydroxynonenal,” Cell & Bioscience, vol. 2, article 40, 2012. View at Google Scholar
  30. S. W. Park, C. H. Lee, S. K. Yeong et al., “Protective effect of baicalin against carbon tetrachloride-induced acute hepatic injury in mice,” Journal of Pharmacological Sciences, vol. 106, no. 1, pp. 136–143, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Yamada and N. Fausto, “Deficient liver regeneration after carbon tetrachloride injury in mice lacking type 1 but not type 2 tumor necrosis factor receptor,” American Journal of Pathology, vol. 152, no. 6, pp. 1577–1589, 1998. View at Google Scholar · View at Scopus
  32. Q. Li, S. Salih, L. Shijun, R. Terry, O. Larry, and F. John, “GPx-1 gene delivery modulates NFκB activation following diverse environmental injuries through a specific subunit of the IKK complex no access,” Antioxidants & Redox Signaling, vol. 3, no. 3, pp. 415–432, 2001. View at Google Scholar
  33. H. Nam, B. Choi, and J. Lee, “The role of nitric oxide in the particulate matter (PM2.5)-induced NFκB activation in lung epithelial cells,” Toxicology Letters, vol. 1, no. 2, pp. 95–102, 2004. View at Google Scholar
  34. H. D. Zhao, F. Zhang, G. Shen et al., “Sulforaphane protects liver injury induced by intestinal ischemia reperfusion through Nrf2-ARE pathway,” World Journal of Gastroenterology, vol. 16, no. 24, pp. 3002–3010, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Bloom, S. Dhakshinamoorthy, W. Wang, C. M. Celli, and A. K. Jaiswal, “Role of NF-E2 related factors in oxidative stress,” in Cell and Molecular Responses to Stress: Protein Adaptation and Signal Transduction, K. B. Storey and J. M. Storey, Eds., vol. 2, pp. 229–238, Elsevier, Amsterdam, The Netherlands, 2001. View at Google Scholar
  36. K. Itoh, N. Wakabayashi, Y. Katoh et al., “Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain,” Genes and Development, vol. 13, no. 1, pp. 76–86, 1999. View at Google Scholar · View at Scopus
  37. S. Dhakshinamoorthy and A. K. Jaiswal, “Small Maf (MafG and MafK) proteins negatively regulate antioxidant response element-mediated expression and antioxidant induction of the NAD(P)H:Quinone oxidoreductase1 gene,” Journal of Biological Chemistry, vol. 275, no. 51, pp. 40134–40141, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Nguyen, H. C. Huang, and C. B. Pickett, “Transcriptional regulation of the antioxidant response element. Activation by Nrf2 and repression by MafK,” Journal of Biological Chemistry, vol. 275, no. 20, pp. 15466–15473, 2000. View at Google Scholar
  39. R. Yu, C. Chen, Y. Y. Mo et al., “Activation of mitogen-activated protein kinase pathways induces antioxidant response element-mediated gene expression via a Nrf2-dependent mechanism,” Journal of Biological Chemistry, vol. 275, no. 51, pp. 39907–39913, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. C. H. He, P. Gong, B. Hu et al., “Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase-1 gene regulation,” Journal of Biological Chemistry, vol. 276, no. 24, pp. 20858–20865, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. H. C. Huang, T. Nguyen, and C. B. Pickett, “Regulation of the antioxidant response element by protein kinase C-mediated phosphorylation of NF-E2-related factor 2,” Proceedings of the National Academy of Sciences of the USA, vol. 97, pp. 12475–12480, 2000. View at Google Scholar
  42. M. K. Kwak, P. A. Egner, P. M. Dolan et al., “Role of phase 2 enzyme induction in chemoprotection by dithiolethiones,” Mutation Research, vol. 480-481, pp. 305–315, 2001. View at Google Scholar
  43. K. Itoh, T. Chiba, S. Takahashi et al., “An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements,” Biochemical and Biophysical Research Communications, vol. 236, no. 2, pp. 313–322, 1997. View at Publisher · View at Google Scholar · View at Scopus
  44. C. J. Harvey, R. K. Thimmulappa, A. Singh et al., “Nrf2 regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress,” Free Radical Biology & Medicine, vol. 46, no. 4, pp. 443–453, 2009. View at Google Scholar
  45. K. C. Wu, J. Y. Cui, and C. D. Klaassen, “Beneficial role of Nrf2 in regulating NADPH generation and consumption,” Toxicological Sciences, vol. 123, no. 2, pp. 590–600, 2011. View at Google Scholar