Table of Contents
Journal of Theoretical Chemistry
Volume 2013, Article ID 327839, 9 pages
http://dx.doi.org/10.1155/2013/327839
Research Article

Density Functional Theory with Modified Dispersion Correction for Metals Applied to Self-Assembled Monolayers of Thiols on Au(111)

Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark

Received 12 June 2013; Accepted 22 August 2013

Academic Editors: Q. Ge, A. Kokalj, and M. Koyama

Copyright © 2013 M. P. Andersson. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Honkala, A. Hellman, I. N. Remediakis et al., “Ammonia synthesis from first-principles calculations,” Science, vol. 307, no. 5709, pp. 555–558, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. V. Barone, M. Casarin, D. Forrer, M. Pavone, M. Sambi, and A. Vittadini, “Role and effective treatment of dispersive forces in materials: polyethylene and graphite crystals as test cases,” Journal of Computational Chemistry, vol. 30, no. 6, pp. 934–939, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Grimme, “Density functional theory with London dispersion corrections,” Wiley Interdisciplinary Reviews, vol. 1, pp. 211–228, 2011. View at Google Scholar
  4. M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, “Van der Waals density functional for general geometries,” Physical Review Letters, vol. 92, no. 24, Article ID 246401, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. O. A. Vydrov and T. Van Voorhis, “Nonlocal van der Waals density functional made simple,” Physical Review Letters, vol. 103, no. 6, Article ID 063004, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Grimme, “Accurate description of van der Waals complexes by density functional theory including empirical corrections,” Journal of Computational Chemistry, vol. 25, no. 12, pp. 1463–1473, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Grimme, “Semiempirical GGA-type density functional constructed with a long-range dispersion correction,” Journal of Computational Chemistry, vol. 27, no. 15, pp. 1787–1799, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Tkatchenko and M. Scheffler, “Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data,” Physical Review Letters, vol. 102, no. 7, Article ID 073005, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, “A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu,” Journal of Chemical Physics, vol. 132, no. 15, Article ID 154104, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Valero, J. R. B. Gomes, D. G. Truhlar, and F. Illas, “Good performance of the M06 family of hybrid meta generalized gradient approximation density functionals on a difficult case: CO adsorption on MgO(001),” Journal of Chemical Physics, vol. 129, Article ID 124710, 2008. View at Google Scholar
  11. T. S. Bučko, J. R. Hafner, S. B. Lebègue, and J. N. G. Ángyán, “Improved description of the structure of molecular and layered crystals: Ab Initio DFT calculations with van der Waals corrections,” The Journal of Physical Chemistry A, vol. 114, pp. 11814–11824, 2010. View at Google Scholar
  12. G.-X. Zhang, A. Tkatchenko, J. Paier, H. Appel, and M. Scheffler, “Van der Waals interactions in ionic and semiconductor solids,” Physical Review Letters, vol. 107, no. 24, Article ID 245501, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Tongying and Y. Tantirungrotechai, “A performance study of density functional theory with empirical dispersion corrections and spin-component scaled second-order Møller-Plesset perturbation theory on adsorbate-zeolite interactions,” Journal of Molecular Structure, vol. 945, no. 1–3, pp. 85–88, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. M. P. Andersson and S. L. S. Stipp, “Sensitivity analysis of cluster models for calculating adsorption energies for organic molecules on mineral surfaces,” Journal of Physical Chemistry C, vol. 115, no. 20, pp. 10044–10055, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Ehrlich, J. Moellmann, W. Reckien, T. Bredow, and S. Grimme, “System-dependent dispersion coefficients for the DFT-D3 treatment of adsorption processes on ionic surfaces,” ChemPhysChem, vol. 12, no. 17, pp. 3414–3420, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Reckien, F. Janetzko, M. F. Peintinger, and T. Bredow, “Implementation of empirical dispersion corrections to density functional theory for periodic systems,” Journal of Computational Chemistry, vol. 33, pp. 2023–2031, 2012. View at Google Scholar
  17. P. V. C. Medeiros, G. K. Gueorguiev, and S. Stafström, “Benzene, coronene, and circumcoronene adsorbed on gold, and a gold cluster adsorbed on graphene: structural and electronic properties,” Physical Review B, vol. 85, no. 20, Article ID 205423, 2012. View at Google Scholar
  18. K. Tonigold and A. Gross, “Adsorption of small aromatic molecules on the (111) surfaces of noble metals: a density functional theory study with semiempirical corrections for dispersion effects,” Journal of Chemical Physics, vol. 132, no. 22, Article ID 224701, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. V. G. Ruiz, W. Liu, E. Zojer, M. Scheffler, and A. Tkatchenko, “Density-functional theory with screened van der Waals interactions for the modeling of hybrid inorganic-organic systems,” Physical Review Letters, vol. 108, no. 14, Article ID 146103, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. T. S. Chwee and M. B. Sullivan, “Adsorption studies of C6H6 on Cu (111), Ag (111), and Au (111) within dispersion corrected density functional theory,” The Journal of Chemical Physics, vol. 137, Article ID 134703, 2012. View at Google Scholar
  21. K. Toyoda, I. Hamada, S. Yanagisawa, and Y. Morikawa, “Adsorption of benzene on noble metal surfaces studied by density functional theory with Van der Waals correction,” Journal of Nanoscience and Nanotechnology, vol. 11, no. 4, pp. 2836–2843, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. A. K. Kelkkanen, B. I. Lundqvist, and J. K. Nørskov, “Van der Waals effect in weak adsorption affecting trends in adsorption, reactivity, and the view of substrate nobility,” Physical Review B, vol. 83, no. 11, Article ID 113401, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Li, I. Tamblyn, V. R. Cooper, H.-J. Gao, and J. B. Neaton, “Molecular adsorption on metal surfaces with van der Waals density functionals,” Physical Review B, vol. 85, no. 12, Article ID 121409, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Lazić, M. Alaei, N. Atodiresei, V. Caciuc, R. Brako, and S. Blügel, “Density functional theory with nonlocal correlation: a key to the solution of the CO adsorption puzzle,” Physical Review B, vol. 81, no. 4, Article ID 045401, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Häkkinen, “The gold-sulfur interface at the nanoscale,” Nature Chemistry, vol. 4, pp. 443–455, 2012. View at Google Scholar
  26. M. Yu, N. Bovet, C. J. Satterley et al., “True nature of an archetypal self-assembly system: mobile Au-thiolate species on Au(111),” Physical Review Letters, vol. 97, no. 16, Article ID 166102, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Maksymovych, D. C. Sorescu, and J. T. Yates, “Gold-adatom-mediated bonding in self-assembled short-chain alkanethiolate species on the Au(111) surface,” Physical Review Letters, vol. 97, no. 14, Article ID 146103, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Mazzarello, A. Cossaro, A. Verdini et al., “Structure of a CH3S monolayer on Au(111) solved by the interplay between molecular dynamics calculations and diffraction measurements,” Physical Review Letters, vol. 98, no. 1, Article ID 016102, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. N. A. Kautz and S. A. Kandel, “Alkanethiol/Au(111) self-assembled monolayers contain gold adatoms: scanning tunneling microscopy before and after reaction with atomic hydrogen,” Journal of the American Chemical Society, vol. 130, no. 22, pp. 6908–6909, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. O. Voznyy, J. J. Dubowski, J. T. Yates Jr., and P. Maksymovych, “The role of gold adatoms and stereochemistry in self-assembly of methylthiolate on Au(111),” Journal of the American Chemical Society, vol. 131, no. 36, pp. 12989–12993, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Grönbeck, H. Häkkinen, and R. L. Whetten, “Gold—thiolate complexes form a unique c(4 × 2) structure on Au(111),” Journal of Physical Chemistry C, vol. 112, no. 41, pp. 15940–15942, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Gottschalck and B. Hammer, “A density functional theory study of the adsorption of sulfur, mercapto, and methylthiolate on Au(111),” Journal of Chemical Physics, vol. 116, no. 2, pp. 784–790, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Abild-Pedersen and M. P. Andersson, “CO adsorption energies on metals with correction for high coordination adsorption sites—A Density Functional Study,” Surface Science, vol. 601, no. 7, pp. 1747–1753, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. K. J. Gaffney, C. M. Wong, S. H. Liu, A. D. Miller, J. D. McNeill, and C. B. Harris, “Femtosecond electron dynamics at the benzene/Ag(111) interface,” Chemical Physics, vol. 251, no. 1–3, pp. 99–110, 2000. View at Google Scholar · View at Scopus
  35. R. Caputo, B. P. Prascher, V. Staemmler, P. S. Bagus, and C. Wöll, “Adsorption of benzene on coinage metals: a theoretical analysis using wavefunction-based methods,” Journal of Physical Chemistry A, vol. 111, no. 49, pp. 12778–12784, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Syomin, J. Kim, B. E. Koel, and G. B. Elison, “Identification of adsorbed phenyl (C6H5) groups on metal surfaces: electron-induced dissociation of benzene on Au(111),” Journal of Physical Chemistry B, vol. 105, no. 35, pp. 8387–8394, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Ihm, H. M. Ajo, J. M. Gottfried, P. Bera, and C. T. Campbell, “Calorimetric measurement of the heat of adsorption of benzene on Pt(111),” Journal of Physical Chemistry B, vol. 108, no. 38, pp. 14627–14633, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. J. N. Israelachvili, Intermolecular and Surface Forces, Academic Press, 3rd edition, 2010.
  39. M. A. Ordal, R. J. Bell, J. R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Applied Optics, vol. 24, pp. 4493–4499, 1985. View at Google Scholar
  40. D. J. Lavrich, S. M. Wetterer, S. L. Bernasek, and G. Scoles, “Physisorption and chemisorption of alkanethiols and alkyl sulfides on Au(111),” Journal of Physical Chemistry B, vol. 102, no. 18, pp. 3456–3465, 1998. View at Google Scholar · View at Scopus
  41. P. Giannozzi, S. Baroni, N. Bonini et al., “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” Journal of Physics Condensed Matter, vol. 21, no. 39, Article ID 395502, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Gianozzi, 2012, http://www.quantum-espresso.org/?page_id=190.
  43. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Physical Review Letters, vol. 77, no. 18, pp. 3865–3868, 1996. View at Google Scholar · View at Scopus
  44. Y. Zhang and W. Yang, “Comment on ‘Generalized Gradient Approximation Made Simple’,” Physical Review Letters, vol. 80, pp. 890–890, 1998. View at Google Scholar
  45. S. Grimme, DFT-D3, http://www.thch.uni-bonn.de/tc/index.php?section=downloads&subsection=DFT-D3&lang=english.
  46. H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Physical Review B, vol. 13, no. 12, pp. 5188–5192, 1976. View at Publisher · View at Google Scholar · View at Scopus
  47. S. E. Mason, I. Grinberg, and A. M. Rappe, “First-principles extrapolation method for accurate CO adsorption energies on metal surfaces,” Physical Review B, vol. 69, no. 16, Article ID 161401, 2004. View at Publisher · View at Google Scholar · View at Scopus