Table of Contents
Journal of Theoretical Chemistry
Volume 2013, Article ID 349870, 7 pages
Research Article

Electron Momentum Density and Phase Transition in ZnS

1Department of Physics, Banasthali University, Banasthali 304022, India
2Department of Physics, University of Rajasthan, Jaipur 302004, India
3Department of Pure and Applied Physics, University of Kota, Kota 324010, India

Received 10 March 2013; Accepted 10 June 2013

Academic Editors: H. Chermette, A. Kokalj, and T. Takayanagi

Copyright © 2013 N. Munjal et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The electron momentum density distribution and phase transition in ZnS are reported in this paper. The calculations are performed on the basis of density functional theory (DFT) based on the linear combination of atomic orbitals (LCAO) method. To compare the theoretical Compton profile, the measurement on polycrystalline ZnS has been made using a Compton spectrometer employing 59.54 keV gamma rays. The spherically averaged theoretical Compton profile is in agreement with the measurement. On the basis of equal valence-electron-density Compton profiles, it is found that ZnS is less covalent as compared to ZnSe. The present study suggests zincblende (ZB) to rocksalt (RS) phase transition at 13.7 GPa. The calculated transition pressure is found in good agreement with the previous investigations.