Journal of Tissue Engineering and Regenerative Medicine
Publishing Collaboration
More info
Wiley Hindawi logo
 Journal metrics
See full report
Acceptance rate-
Submission to final decision-
Acceptance to publication-
CiteScore9.300
Journal Citation Indicator0.740
Impact Factor4.323

Submit your research today

Journal of Tissue Engineering and Regenerative Medicine is now an open access journal, and articles will be immediately available to read and reuse upon publication.

Read our author guidelines

 Journal profile

Journal of Tissue Engineering and Regenerative Medicine is a multidisciplinary journal that publishes articles on the development of therapeutic approaches to repair, replace, restore, regenerate, or improve tissue or organ function.

 Editor spotlight

Chief Editor, Professor Catherine Kuo is currently an Associate Professor at the University of Maryland. Her research integrates developmental biology with materials science and engineering to inform tendon regenerative medicine strategies.

 Abstracting and Indexing

This journal's articles appear in a wide range of abstracting and indexing databases, and are covered by numerous other services that aid discovery and access. Find out more about where and how the content of this journal is available.

Latest Articles

More articles
Review Article

3D Printing of Bone Substitutes Based on Vat Photopolymerization Processes: A Systematic Review

Treatment options for critically sized bone defects are currently limited to metal osteosynthesis, autologous bone grafting, or calcium-based implants to bridge the gap. Additive manufacturing techniques pose a possible alternative. The light-basedthree-dimensional printing process of vat photopolymerization (VP) is of particular interest since it enables the printing of complex scaffold architectures at high resolution. This review compares multiple vat photopolymerization processes as well as the employed resin components’ interactions with musculoskeletal cells and tissue. The results show an outstanding printing capability, exceeding the potential of other printing methods. However, despite the availability of various biocompatible materials, neither the mechanical strength of bone nor the scale necessary for clinical application has been achieved so far when relying on single material constructs. One possible solution is the development of adaptive hybrid constructs produced with multimaterial VP.

Research Article

Fluorapatite-Coated Percutaneous Devices Promote Wound Healing and Limit Epithelial Downgrowth at the Skin-Device Interface

A percutaneous osseointegrated device becomes deeply ingrown by endosteal bone and traverses the overlying soft tissues of the residual limb, providing a direct link to the bone-anchored artificial limb. Continuous wound healing around these devices can result in the formation of sinus tracts as “down-growing” epithelial cells are unable to recognize and adhere to the “nonbiological” implant surface. Such sinus tracts provide paths for bacterial colonization and deep infection. In order to limit adverse outcomes and provide a robust seal, it was hypothesized that by coating the titanium surface of the percutaneous post with the mineral component of dental enamel, down-growing epidermal cells might recognize the coating as “biological” and adhere to this nonliving surface. To test this hypothesis, sintered partially and fully fluoridated hydroxyapatite (HA) was chosen as coatings. Using an established surgical protocol, fluorapatite (FA), hydroxyfluorapatite (FHA), HA-coated percutaneous posts, and titanium controls were surgically placed under the dorsal skin in 20 CD hairless rats. The animals were sacrificed at four weeks, and implants and surrounding tissues were harvested and subjected to further analyses. Downgrowth and granulation tissue area data showed statistically significant reductions around the FA-coated devices. Moreover, compared to the control group, the FA- and HA-coated groups showed downregulation of mRNA for EGFr, EGF, and FGF-10. Interestingly, the FA-coated group had upregulation of TGF-α. These data suggest that FA could become an ideal coating material for preventing downgrowth, assuming the long-term stability of these coated surfaces can be verified in a clinically relevant animal model.

Research Article

Development and Validation of a Multiparametric Semiquantitative Scoring System for the Histopathological Assessment of Ischaemia Severity in Skeletal Muscle

Skeletal muscle is one of the most abundant and dynamic tissues of the body, with a strong regenerative capacity. Muscle injuries can occur as a result of a variety of events, including tissue ischaemia. Lower limb ischaemia occurs when there is an insufficient nutrient and oxygen supply, often caused by stenosis of the arteries due to atherosclerosis. The aim of this study was to develop and validate a multiparametric scoring tool for assessing ischaemia severity in skeletal muscle in a commonly used preclinical animal model. Tissue ischaemia was surgically induced in mice by ligation and excision of the femoral artery. Calf muscles were carefully dissected, prepared for histological analysis, and scored for inflammation, fibrosis, necrosis, adipocyte infiltration, and muscle fibre degeneration/regeneration. Kendall’s coefficient of concordance (W) showed a very good agreement between the appraisers when scoring each individual histological feature: inflammation (W = 0.92, ), fibrosis (W = 0.94, ), necrosis (W = 0.77, ), adipocyte infiltration (W = 0.91, ), and fibre degeneration/regeneration (W = 0.86, ). Intrarater agreement was also excellent (W = 0.94 or more, ). There was a statistically significant negative association between the level of muscle ischaemia damage and the calf muscle weight and skeletal muscle fibre diameter. Here, we have developed and validated a new multiparametric, semiquantitative scoring system for assessing skeletal muscle damage due to ischaemia, with excellent inter- and intrarater reproducibility. This scoring system can be used for assessing treatment efficacy in preclinical models of hind limb ischaemia.

Research Article

Patient-Derived Breast Cancer Bone Metastasis In Vitro Model Using Bone-Mimetic Nanoclay Scaffolds

The unavailability of reliable models for studying breast cancer bone metastasis is the major challenge associated with poor prognosis in advanced-stage breast cancer patients. Breast cancer cells tend to preferentially disseminate to bone and colonize within the remodeling bone to cause bone metastasis. To improve the outcome of patients with breast cancer bone metastasis, we have previously developed a 3D in vitro breast cancer bone metastasis model using human mesenchymal stem cells (hMSCs) and primary breast cancer cell lines (MCF-7 and MDAMB231), recapitulating late-stage of breast cancer metastasis to bone. In the present study, we have tested our model using hMSCs and patient-derived breast cancer cell lines (NT013 and NT023) exhibiting different characteristics. We investigated the effect of breast cancer metastasis on bone growth using this 3D in vitro model and compared our results with previous studies. The results showed that NT013 and NT023 cells exhibiting hormone-positive and triple-negative characteristics underwent mesenchymal to epithelial transition (MET) and formed tumors in the presence of bone microenvironment, in line with our previous results with MCF-7 and MDAMB231 cell lines. In addition, the results showed upregulation of Wnt-related genes in hMSCs, cultured in the presence of excessive ET-1 cytokine released by NT013 cells, while downregulation of Wnt-related genes in the presence of excessive DKK-1, released by NT023 cells, leading to stimulation and abrogation of the osteogenic pathway, respectively, ultimately mimicking different types of bone lesions in breast cancer patients.

Research Article

Endothelial Progenitor Cell Therapy for Fracture Healing: A Dose-Response Study in a Rat Femoral Defect Model

Endothelial progenitor cell (EPC) therapy has been successfully used in orthopaedic preclinical models to heal bone defects. However, no previous studies have investigated the dose-response relationship between EPC therapy and bone healing. This study aimed to assess the effect of different EPC doses on bone healing in a rat model to define an optimal dose. Five-millimeter segmental defects were created in the right femora of Fischer 344 rats, followed by stabilization with a miniplate and screws. Rats were assigned to one of six groups (control, 0.1 M, 0.5 M, 1.0 M, 2.0 M, and 4.0 M; n = 6), receiving 0, 1 × 105, 5 × 105, 1 × 106, 2 × 106, and 4 × 106 EPCs, respectively, delivered into the defect on a gelatin scaffold. Radiographs were taken every two weeks until the animals were euthanized 10 weeks after surgery. The operated femora were then evaluated using micro-computed tomography and biomechanical testing. Overall, the groups that received higher doses of EPCs (0.5 M, 1.0 M, 2.0 M, and 4.0 M) reached better outcomes. At 10 weeks, full radiographic union was observed in 67% of animals in the 0.5 M group, 83% of animals in the 1.0 M group, and 100% of the animals in the 2.0 M and 4.0 M groups, but none in the control and 0.1 M groups. The 2.0 M group also displayed the strongest biomechanical properties, which significantly improved relative to the control and 0.1 M groups. In summary, this study defined a dose-response relationship between EPC therapy and bone healing, with 2 × 106 EPCs being the optimal dose in this model. Our findings emphasize the importance of dosing considerations in the application of cell therapies aimed at tissue regeneration and will help guide future investigations and clinical translation of EPC therapy.

Research Article

Ascorbic Acid 2-Phosphate-Releasing Supercritical Carbon Dioxide-Foamed Poly(L-Lactide-Co-epsilon-Caprolactone) Scaffolds Support Urothelial Cell Growth and Enhance Human Adipose-Derived Stromal Cell Proliferation and Collagen Production

Tissue engineering can provide a novel approach for the reconstruction of large urethral defects, which currently lacks optimal repair methods. Cell-seeded scaffolds aim to prevent urethral stricture and scarring, as effective urothelium and stromal tissue regeneration is important in urethral repair. In this study, the aim was to evaluate the effect of the novel porous ascorbic acid 2-phosphate (A2P)-releasing supercritical carbon dioxide-foamed poly(L-lactide-co-ε-caprolactone) (PLCL) scaffolds (scPLCLA2P) on the viability, proliferation, phenotype maintenance, and collagen production of human urothelial cell (hUC) and human adipose-derived stromal cell (hASC) mono- and cocultures. The scPLCLA2P scaffold supported hUC growth and phenotype both in monoculture and in coculture. In monocultures, the proliferation and collagen production of hASCs were significantly increased on the scPLCLA2P compared to scPLCL scaffolds without A2P, on which the hASCs formed nonproliferating cell clusters. Our findings suggest the A2P-releasing scPLCLA2P to be a promising material for urethral tissue engineering.

Journal of Tissue Engineering and Regenerative Medicine
Publishing Collaboration
More info
Wiley Hindawi logo
 Journal metrics
See full report
Acceptance rate-
Submission to final decision-
Acceptance to publication-
CiteScore9.300
Journal Citation Indicator0.740
Impact Factor4.323
 Submit

Article of the Year Award: Outstanding research contributions of 2021, as selected by our Chief Editors. Read the winning articles.