Table of Contents
Journal of Textiles
Volume 2013, Article ID 579129, 6 pages
Research Article

Ultraviolet Protection by Fabric Engineering

1Uttar Pradesh Textile Technology Institute (Formerly Known as GCTI), Kanpur 208001, India
2Institute of Biosciences and Biotechnology, CSJMU, Kanpur, India

Received 12 November 2012; Revised 15 March 2013; Accepted 16 March 2013

Academic Editor: Anindya Ghosh

Copyright © 2013 Mukesh Kumar Singh and Annika Singh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Background. The increasing emission of greenhouse gases has evoked the human being to save the ozone layer and minimize the risk of ultraviolet radiation (UVR). Various fabric structures have been explored to achieve desired ultraviolet protection factor (UPF) in various situations. Objective. In this study, the effect of various filament configurations like twisted, flat, intermingled, and textured in multifilament yarns on fabric in different combinations is assessed in order to engineer a fabric of better ultraviolet protection factor (UPF). Methods. In order to engineer a fabric having optimum UV protection with sufficient comfort level in multifilament woven fabrics, four different yarn configurations, intermingled, textured, twisted, and flat, were used to develop twelve different fabric samples. The most UV absorbing and most demanding fibre polyethylene terephthalate (PET) was considered in different filament configuration. Results. The combinations of intermingled warp with flat, intermingled, and textured weft provided excellent UVR protection comparatively at about 22.5 mg/cm2 fabric areal density. The presence of twisted yarn reduced the UV protection due to enhanced openness in fabric structure. Conclusion. The appropriate combination of warp and weft threads of different configuration should be selected judiciously in order to extract maximum UV protection and wear comfort attributes in multifilament woven PET fabrics.