Table of Contents
Journal of Textiles
Volume 2014 (2014), Article ID 154184, 9 pages
http://dx.doi.org/10.1155/2014/154184
Review Article

Applied Biomimetics: A New Fresh Look of Textiles

Institute of Macromolecular Chemistry Petru Poni Iaşi, Aleea Grigore Ghica Vodă, No. 41A, 700487 Iaşi, Romania

Received 4 November 2013; Accepted 7 January 2014; Published 25 February 2014

Academic Editor: Ricardo Molina

Copyright © 2014 Mirela Teodorescu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. F. V. Vincent, O. A. Bogatyreva, N. R. Bogatyrev, A. Bowyer, and A.-K. Pahl, “Biomimetics: its practice and theory,” Journal of the Royal Society Interface, vol. 3, no. 9, pp. 471–482, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Sullivan, “Otto H. Schmitt, Como People of the Past,” Como History.
  3. J. M. Benyus, Biomimicry: Innovation Inspired by Nature, William Morrow, New York, NY, USA, 1997.
  4. O. Schmitt, “Some interesting and useful biomimetic transforms,” in Proceedings of the 3rd International Biophysics Congress, p. 297, 1969.
  5. http://www.merriam-webster.com/dictionary/biomimetics.
  6. J. Gatesy, C. Hayashi, D. Motriuk, J. Woods, and R. Lewis, “Extreme diversity, conservation, and convergence of spider silk fibroin sequences,” Science, vol. 291, no. 5513, pp. 2603–2605, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Vendrely and T. Scheibel, “Biotechnological production of spider-silk proteins enables new applications,” Macromolecular Bioscience, vol. 7, no. 4, pp. 401–409, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. K. G. Satyanarayana, C. K. S. Pillai, K. Sukumaran, S. G. K. Pillai, P. K. Rohatgi, and K. Vijayan, “Structure property studies of fibres from various parts of the coconut tree,” Journal of Materials Science, vol. 17, no. 8, pp. 2453–2462, 1982. View at Publisher · View at Google Scholar · View at Scopus
  9. I. Burgert, K. Frühmann, J. Keckes, P. Fratzl, and S. Stanzl-Tschegg, “Structure-function relationships of four compression wood types: micromechanical properties at the tissue and fibre level,” Trees, vol. 18, no. 4, pp. 480–485, 2004. View at Google Scholar · View at Scopus
  10. A. S. Deshpande, I. Burgert, and O. Paris, “Hierarchically structured ceramics by high-precision nanoparticle casting of wood,” Small, vol. 2, no. 8-9, pp. 994–998, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. J. E. Gordon and G. Jeronimidis, “Composites with high work of fracture [and discussion],” Philosophical Transactions of the Royal Society A, vol. 294, pp. 545–550, 1980. View at Publisher · View at Google Scholar
  12. J. Keckes, I. Burgert, K. Frühmann et al., “Cell-wall recovery after irreversible deformation of wood,” Nature Materials, vol. 2, no. 12, pp. 810–814, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Amada, Y. Ichikawa, T. Munekata, Y. Nagase, and H. Shimizu, “Fiber texture and mechanical graded structure of bamboo,” Composites B, vol. 28, no. 1-2, pp. 13–20, 1997. View at Google Scholar · View at Scopus
  14. S. H. Li, Q. Y. Zeng, Y. L. Xiao, S. Y. Fu, and B. L. Zhou, “Biomimicry of bamboo bast fiber with engineering composite materials,” Materials Science and Engineering C, vol. 3, no. 2, pp. 125–130, 1995. View at Google Scholar · View at Scopus
  15. I. Burgert and P. Fratzl, “Actuation systems in Plants as prototypes for bioinspired devices,” Philosophical Transactions of the Royal Society A, vol. 367, no. 1893, pp. 1541–1557, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Dawson, J. F. V. Vincent, and A.-M. Rocca, “How pine cones open,” Nature, vol. 390, no. 6661, p. 668, 1997. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Reyssat and L. Mahadevan, “Hygromorphs: from pine cones to biomimetic bilayers,” Journal of the Royal Society Interface, vol. 6, no. 39, pp. 951–957, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. http://www.sciencedaily.com/releases/2004/10/041005073957.htm.
  19. J. Aizenberg, J. C. Weaver, M. S. Thanawala, V. C. Sundar, D. E. Morse, and P. Fratzl, “Materials science: skeleton of euplectella sp.: structural hierarchy from the nanoscale to the macroscale,” Science, vol. 309, no. 5732, pp. 275–278, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. D. N. DOW NF and T. G. TRANFIELD G, “Preliminary investigations of feasibility of weaving triaxial fabrics (Doweave),” Textile Research Journal, vol. 40, no. 11, pp. 986–998, 1970. View at Google Scholar · View at Scopus
  21. H. Yahya, Biomimetics: Technology Imitates Nature, Global, Istanbul, Turkey, 2006.
  22. J. M. Gosline, C. Nichols, P. Guerette, A. Cheng, and S. Katz, “The macromolecular design of spiders’ silk,” in Biomimetics: Design and Processing of Materials, M. Sarikaya and I. Aksay, Eds., pp. 237–261, AIP Press, Woodbury, NY, USA, 1995. View at Google Scholar
  23. F. Vollrath and D. P. Knight, “Liquid crystalline spinning of spider silk,” Nature, vol. 410, no. 6828, pp. 541–548, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. X. Hu, B. Lawrence, K. Kohler et al., “Araneoid egg case silk: a fibroin with novel ensemble repeat units from the black widow spider, Latrodectus hesperus,” Biochemistry, vol. 44, no. 30, pp. 10020–10027, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Vendrely and T. Scheibel, “Biotechnological production of spider-silk proteins enables new applications,” Macromolecular Bioscience, vol. 7, no. 4, pp. 401–409, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. M. B. Hinman, J. A. Jones, and R. V. Lewis, “Synthetic spider silk: a modular fiber,” Trends in Biotechnology, vol. 18, no. 9, pp. 374–379, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Autumn, Y. A. Liang, S. T. Hsieh et al., “Adhesive force of a single gecko foot-hair,” Nature, vol. 405, no. 6787, pp. 681–685, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Autumn, M. Sitti, Y. A. Liang et al., “Evidence for van der Waals adhesion in gecko setae,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 19, pp. 12252–12256, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Bhushan, “Adhesion of multi-level hierarchical attachment systems in gecko feet,” Journal of Adhesion Science and Technology, vol. 21, no. 12-13, pp. 1213–1258, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Chirita and M. Chirita, Tratat De Biomolecule, vol. 1-2, Sedcom Libris, 2009.
  31. M. T. Northen and K. L. Turner, “A batch fabricated biomimetic dry adhesive,” Nanotechnology, vol. 16, no. 8, pp. 1159–1166, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Mahdavi, L. Ferreira, C. Sundback et al., “A biodegradable and biocompatible gecko-inspired tissue adhesive,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 7, pp. 2307–2312, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Sitti and R. S. Fearing, “Synthetic gecko foot-hair micro/nano-structures for future wall-climbing robots,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA'03), vol. 1, pp. 1164–1170, 2003.
  34. B. Aksak, M. P. Murphy, and M. Sitti, “Adhesion of biologically inspired vertical and angled polymer microfiber arrays,” Langmuir, vol. 23, no. 6, pp. 3322–3332, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Davies, S. Haq, T. Hawke, and J. P. Sargent, “A practical approach to the development of a synthetic Gecko tape,” International Journal of Adhesion and Adhesives, vol. 29, no. 4, pp. 380–390, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. N. J. Glassmaker, A. Jagota, C.-Y. Hui, and J. Kim, “Design of biomimetic fibrillar interfaces: 1. Making contact,” Journal of the Royal Society Interface, vol. 1, no. 1, pp. 23–33, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Gorb, M. Varenberg, A. Peressadko, and J. Tuma, “Biomimetic mushroom-shaped fibrillar adhesive microstructure,” Journal of the Royal Society Interface, vol. 4, no. 13, pp. 271–275, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. A. K. Geim, S. V. Dubonos, I. V. Grigorieva, K. S. Novoselov, A. A. Zhukov, and S. Y. Shapoval, “Microfabricated adhesive mimicking gecko foot-hair,” Nature Materials, vol. 2, no. 7, pp. 461–463, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. S. J. Abbott and P. H. Gaskell, “Mass production of bio-inspired structured surfaces,” Proceedings of the Institution of Mechanical Engineers C, vol. 221, no. 10, pp. 1181–1191, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. L. Ge, S. Sethi, L. Ci, P. M. Ajayan, and A. Dhinojwala, “Carbon nanotube-based synthetic gecko tapes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 26, pp. 10792–10795, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. B. Yurdumakan, N. R. Raravikar, P. M. Ajayan, and A. Dhinojwala, “Synthetic gecko foot-hairs from multiwalled carbon nanotubes,” Chemical Communications, no. 30, pp. 3799–3801, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Neinhuis and W. Barthlott, “Characterization and distribution of water-repellent, self-cleaning plant surfaces,” Annals of Botany, vol. 79, no. 6, pp. 667–677, 1997. View at Publisher · View at Google Scholar · View at Scopus
  43. W. Barthlott and C. Neinhuis, “Purity of the sacred lotus, or escape from contamination in biological surfaces,” Planta, vol. 202, no. 1, pp. 1–8, 1997. View at Publisher · View at Google Scholar · View at Scopus
  44. P. Wagner, R. Fürstner, W. Barthlott, and C. Neinhuis, “Quantitative assessment to the structural basis of water repellency in natural and technical surfaces,” Journal of Experimental Botany, vol. 54, no. 385, pp. 1295–1303, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. K. Koch, B. Bhushan, and W. Barthlott, “Multifunctional surface structures of plants: an inspiration for biomimetics,” Progress in Materials Science, vol. 54, no. 2, pp. 137–178, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. H. A. Schuyten, J. D. Reid, J. W. Weaver, and J. G. Frick, “Imparting water-repellency to textiles by chemical methods—a review of the literature,” Textile Research Journal, vol. 18, pp. 396–398, 1948. View at Publisher · View at Google Scholar
  47. T. Sun, L. Feng, X. Gao, and L. Jiang, “Bioinspired surfaces with special wettability,” Accounts of Chemical Research, vol. 38, no. 8, pp. 644–652, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Morra, E. Occhiello, and F. Garbassi, “Contact angle hysteresis in oxygen plasma treated poly(tetrafluoroethylene),” Langmuir, vol. 5, no. 3, pp. 872–876, 1989. View at Google Scholar · View at Scopus
  49. H. Yabu and M. Shimomura, “Single-step fabrication of transparent superhydrophobic porous polymer films,” Chemistry of Materials, vol. 17, no. 21, pp. 5231–5234, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Zhang, J. Li, and Y. Han, “Superhydrophobic PTFE surfaces by extension,” Macromolecular Rapid Communications, vol. 25, no. 11, pp. 1105–1108, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. P. Avram, M. Teodorescu, A. Curteza, P. Agrawal, and G. Brinks, “Biomimetic approach, from lotus leaves to superhydrophobic materials,” in Proocedings of the 14 th Romanian Textiles and Leather Conference (CORTEP '12), Performantica, 2012.
  52. P. Avram, M. Teodorescu, A. Curteza, P. Agrawal, and G. Brinks, “Just like nature—acheaving superhydrophobic functional clothing,” in Proceedings of the 14th Romanian Textiles and Leather Conference (CORTEP '12), Performantica, 2012.
  53. S. A. Brewer and C. R. Willis, “Structure and oil repellency. Textiles with liquid repellency to hexane,” Applied Surface Science, vol. 254, no. 20, pp. 6450–6454, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. L. Gao and T. J. McCarthy, “‘Artificial lotus leaf’ prepared using a 1945 patent and a commercial textile,” Langmuir, vol. 22, no. 14, pp. 5998–6000, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. F. J. Norton, “Waterproofing treatments of materials,” US Patent 2386259, 1945.
  56. H. F. Hoefnagels, D. Wu, G. De With, and W. Ming, “Biomimetic superhydrophobic and highly oleophobic cotton textiles,” Langmuir, vol. 23, no. 26, pp. 13158–13163, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. B. Leng, Z. Shao, G. De With, and W. Ming, “Superoleophobic cotton textiles,” Langmuir, vol. 25, no. 4, pp. 2456–2460, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. E. Bormashenko, Y. Bormashenko, T. Stein, G. Whyman, and E. Bormashenko, “Why do pigeon feathers repel water? Hydrophobicity of pennae, Cassie-Baxter wetting hypothesis and Cassie-Wenzel capillarity-induced wetting transition,” Journal of Colloid and Interface Science, vol. 311, no. 1, pp. 212–216, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. Y. Liu, X. Chen, and J. H. Xin, “Hydrophobic duck feathers and their simulation on textile substrates for water repellent treatment,” Bioinspiration and Biomimetics, vol. 3, no. 4, Article ID 046007, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. D. M. Bushnell and K. J. Moore, “Drag reduction in nature,” Annual Review of Fluid Mechanics, vol. 23, no. 1, pp. 65–79, 1991. View at Google Scholar · View at Scopus
  61. D. W. Bechert, M. Bruse, W. Hage, and R. Meyer, “Fluid mechanics of biological surfaces and their technological application,” Naturwissenschaften, vol. 87, no. 4, pp. 157–171, 2000. View at Google Scholar · View at Scopus
  62. D. W. Bechert, M. Bruse, W. Hage, J. G. T. Van Der Hoeven, and G. Hoppe, “Experiments on drag-reducing surfaces and their optimization with an adjustable geometry,” Journal of Fluid Mechanics, vol. 338, pp. 59–87, 1997. View at Google Scholar · View at Scopus
  63. K. Koeltzsch, A. Dinkelacker, and R. Grundmann, “Flow over convergent and divergent wall riblets,” Experiments in Fluids, vol. 33, no. 2, pp. 346–350, 2002. View at Google Scholar · View at Scopus
  64. A. W. Lang, P. Motta, P. Hidalgo, and M. Westcott, “Bristled shark skin: a microgeometry for boundary layer control?” Bioinspiration and Biomimetics, vol. 3, no. 4, Article ID 046005, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. D. W. Bechert, M. Bartenwerfer, G. Hoppe, and W. E. Reif, “Drag reduction mechanisms derived from shark skin,” in Proceedings of the 15th Congress of the International Council of the Aeronautical Sciences (ICAS '86), P. Santini and R. Staufenbiel, Eds., pp. 1044–1054, American Institute of Aeronautics and Astronautics, New York, NY, USA, 1986.
  66. H. M. Toussaint, M. Truijens, M. Elzinga et al., “Effect of a fastskin “body” suit on drag during front crawl swimming,” Sport Biomechanics, vol. 1, pp. 1–10, 2002. View at Publisher · View at Google Scholar
  67. R. H. C. Bonser and C. Dawson, “Structural mechanical properties of down feathers and biomimicking natural insulation materials,” Journal of Materials Science Letters, vol. 18, no. 21, pp. 1769–1770, 1999. View at Publisher · View at Google Scholar · View at Scopus
  68. C. Dawson, J. F. V. Vincent, G. Jeronimidis, G. Rice, and P. Forshaw, “Heat transfer through penguin feathers,” Journal of Theoretical Biology, vol. 199, no. 3, pp. 291–295, 1999. View at Publisher · View at Google Scholar · View at Scopus
  69. http://www.gore-tex.com/remote/Satellite/content/fabric-technologies.
  70. N. A. Oritsland and D. M. Lavigne, “Radiative surface temperatures of exercising polar bears,” Comparative Biochemistry and Physiology, vol. 53, no. 4, pp. 327–330, 1976. View at Google Scholar · View at Scopus
  71. T. Stegmaier, M. Linke, and H. Planck, “Bionics in textiles: flexible and translucent thermal insulations for Solar thermal applications,” Philosophical Transactions of the Royal Society A, vol. 367, no. 1894, pp. 1749–1758, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. R. E. Grojean, J. A. Sousa, and M. C. Henry, “Utilization of solar radiation by polar animals: an optical model for pelts,” Applied Optics, vol. 19, no. 3, pp. 339–346, 1980. View at Google Scholar · View at Scopus
  73. D. W. Koon, “Is polar bear hair fiber optic?” Applied Optics, vol. 37, no. 15, pp. 3198–3200, 1998. View at Google Scholar · View at Scopus
  74. M. Teodorescu, A. Curteza, I. Petcu, and M. Călin, “The diversity of structural colour in nature, an inspiration for biomimetic textile materials,” in Proceedings of the 11th World Textile Conference (Autex '11), vol. 2, pp. 852–85, 2011.
  75. M. Teodorescu, M. Calin, I. Petcu, A. Curteza, L. Schacher, and D. Adolphe, in Proceedings of the 14th Romanian Textiles and Leather Conference (CORTEP '12), pp. 267–273, Performantica, 2012.
  76. A. L. Ingram, “Butterfly photonics: form and function,” Functional Surfaces in Biology, vol. 1, pp. 307–336, 2009. View at Publisher · View at Google Scholar
  77. S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proceedings of the Royal Society B, vol. 269, no. 1499, pp. 1417–1421, 2002. View at Publisher · View at Google Scholar · View at Scopus
  78. K. Michielsen and D. G. Stavenga, “Gyroid cuticular structures in butterfly wing scales: biological photonic crystals,” Journal of the Royal Society Interface, vol. 5, no. 18, pp. 85–94, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds, and moths,” Chemical Reviews, vol. 99, no. 7, pp. 1935–1961, 1999. View at Google Scholar · View at Scopus
  80. M. D. Shawkey, M. E. Hauber, L. K. Estep, and G. E. Hill, “Evolutionary transitions and mechanisms of matte and iridescent plumage coloration in grackles and allies (Icteridae),” Journal of the Royal Society Interface, vol. 3, no. 11, pp. 777–786, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. J. Zi, X. Yu, Y. Li et al., “Coloration strategies in peacock feathers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, pp. 12576–12578, 2003. View at Publisher · View at Google Scholar
  82. A. R. Parker, V. L. Welch, D. Driver, and N. Martini, “Opal analogue discovered in a weevil,” Nature, vol. 426, no. 6968, pp. 786–787, 2003. View at Publisher · View at Google Scholar · View at Scopus
  83. A. R. Parker, “The diversity and implications of animal structural colours,” Journal of Experimental Biology, vol. 201, no. 16, pp. 2343–2347, 1998. View at Google Scholar · View at Scopus
  84. G. Tayeb, B. Gralak, and S. Enoch, “Structural colors in nature and butterfly-wing modeling,” Optics and Photonics News, vol. 14, no. 2, pp. 38–49, 2003. View at Google Scholar · View at Scopus
  85. K. Kertesz, Z. Bálint, Z. Vértesy et al., “Photonic crystal type structures of biological origin: structural and spectral characterization,” Current Applied Physics, vol. 6, pp. 252–258, 2006. View at Publisher · View at Google Scholar
  86. J. Huang, X. Wang, and Z. L. Wang, “Controlled replication of butterfly wings for achieving tunable photonic properties,” Nano Letters, vol. 6, no. 10, pp. 2325–2331, 2006. View at Publisher · View at Google Scholar · View at Scopus
  87. P. Vukusic and R. Sambles, “Shedding light on butterfly wings,” in Physics, Theory, and Applications of Periodic Structures in Optics, vol. 4438 of Proceeding of SPIE, pp. 85–95, 2001. View at Publisher · View at Google Scholar
  88. T. Hongau and G. O. Phillips, New Fibers, Woodhead, Cambridge, UK, 2nd edition, 1997.
  89. N. Kenkichi, “Structurally colored fiber morphotex,” Annals of the High Performance Paper Society, vol. 43, pp. 17–21, 2005. View at Google Scholar