Table of Contents
Journal of Thermodynamics
Volume 2011 (2011), Article ID 432132, 4 pages
http://dx.doi.org/10.1155/2011/432132
Research Article

Vapor Pressure of Saturated Aqueous Solutions of Potassium Sulfate from 310 K to 345 K

Programa de Electroquímica Aplicada e Ingeniería Electroquímica (PRELINE), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829, 3000 Santa Fe, Argentina

Received 29 June 2011; Accepted 11 September 2011

Academic Editor: Angelo Lucia

Copyright © 2011 Matias O. Maggiolo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Apelblat and E. Korin, “The vapour pressures over saturated aqueous solutions of cadmium chloride, cadmium bromide, cadmium iodide, cadmium nitrate, and cadmium sulphate,” Journal of Chemical Thermodynamics, vol. 39, no. 7, pp. 1065–1070, 2007. View at Publisher · View at Google Scholar
  2. A. Apelblat and E. Korin, “The molar enthalpies of solution and vapour pressures of saturated aqueous solutions of some ammonium salts,” Journal of Chemical Thermodynamics, vol. 35, no. 5, pp. 699–709, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Apelblat and E. Manzurola, “Solubilities and vapour pressures of saturated aqueous solutions of sodium tetraborate, sodium carbonate, and magnesium sulfate and freezing-temperature lowerings of sodium tetraborate and sodium carbonate solutions,” Journal of Chemical Thermodynamics, vol. 35, no. 2, pp. 221–238, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. H. G. Leopold and J. Johnston, “The vapor pressure of the saturated aqueous solutions of certain salts,” Journal of the American Chemical Society, vol. 49, no. 8, pp. 1974–1988, 1927. View at Google Scholar · View at Scopus
  5. H. W. Foote, B. Saxton, and J. K. Dixon, “The vapor pressures of saturated aqueous solutions of certain salts,” Journal of the American Chemical Society, vol. 54, no. 2, pp. 563–568, 1932. View at Google Scholar · View at Scopus
  6. J. R. Adams and A. R. Merz, “Hygroscopicity of fertilizer materials and mixtures,” Industrial and Engineering Chemistry, vol. 21, pp. 305–307, 1929. View at Google Scholar
  7. A. Wexler and S. Hasegawa, “Relative humidity-temperature relationships of some saturated salt solutions in the temperature range 0° to 50°C,” Journal of Research of the National Bureau of Standards, vol. 53, pp. 19–26, 1954. View at Google Scholar
  8. E. Berkeley, “On some physical constant of saturated solutions,” Philosophical Transactions of the Royal Society A, vol. 203, pp. 189–215, 1904. View at Google Scholar
  9. K. S. Kim, S. Y. Park, S. Choi, and H. Lee, “Vapor pressures of the 1-butyl-3-methylimidazolium bromide + water, 1-butyl-3-methylimidazolium tetrafluoroborate + water, and 1-(2-hydroxyethyl)-3- methylimidazolium tetrafluoroborate + water systems,” Journal of Chemical and Engineering Data, vol. 49, no. 6, pp. 1550–1553, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. D. R. Lide, Handbook of Chemistry and Physics, CRC Press, New York, NY, USA, 2006-2007.
  11. W. Wagner and A. Pruß, “The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use,” Journal of Physical and Chemical Reference Data, vol. 31, no. 2, pp. 387–535, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Apelblat and E. Korin, “The vapour pressures of saturated aqueous solutions of sodium chloride, sodium bromide, sodium nitrate, sodium nitrite, potassium iodate, and rubidium chloride at temperatures from 227 K to 323 K,” Journal of Chemical Thermodynamics, vol. 30, no. 1, pp. 59–71, 1998. View at Google Scholar
  13. J. A. Rard and R. F. Platford, Activity Coefficients in Electrolyte Solutions, K. S. Pitzer, CRC Press, Boca Raton, Fla, USA, 1991.
  14. A. H. Harvey and E. W. Lemmon, “Correlation for the second virial coefficient of water,” Journal of Physical and Chemical Reference Data, vol. 33, no. 1, pp. 369–376, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. G. S. Kell, “Density, thermal expansivity, and compressibility of liquid water from 0° to 155°C: correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale,” Journal of Chemical and Engineering Data, vol. 20, no. 1, pp. 97–105, 1975. View at Google Scholar · View at Scopus
  16. A. Seidell and F. W. Linke, Solubilities of Inorganic and Metallo-Organic Compounds, vol. 2, American Chemical Society, Washington, DC, USA, 1965.