Table of Contents
Journal of Thermodynamics
Volume 2013, Article ID 169674, 9 pages
Research Article

MHD Stagnation-Point Flow of Casson Fluid and Heat Transfer over a Stretching Sheet with Thermal Radiation

Department of Mathematics, The University of Burdwan, Burdwan, West Bengal 713104, India

Received 28 May 2013; Accepted 3 September 2013

Academic Editor: Felix Sharipov

Copyright © 2013 Krishnendu Bhattacharyya. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The two-dimensional magnetohydrodynamic (MHD) stagnation-point flow of electrically conducting non-Newtonian Casson fluid and heat transfer towards a stretching sheet have been considered. The effect of thermal radiation is also investigated. Implementing similarity transformations, the governing momentum, and energy equations are transformed to self-similar nonlinear ODEs and numerical computations are performed to solve those. The investigation reveals many important aspects of flow and heat transfer. If velocity ratio parameter (B) and magnetic parameter (M) increase, then the velocity boundary layer thickness becomes thinner. On the other hand, for Casson fluid it is found that the velocity boundary layer thickness is larger compared to that of Newtonian fluid. The magnitude of wall skin-friction coefficient reduces with Casson parameter (β). The velocity ratio parameter, Casson parameter, and magnetic parameter also have major effects on temperature distribution. The heat transfer rate is enhanced with increasing values of velocity ratio parameter. The rate of heat transfer is enhanced with increasing magnetic parameter M for B > 1 and it decreases with M for B < 1. Moreover, the presence of thermal radiation reduces temperature and thermal boundary layer thickness.