Research Article  Open Access
A. S. Madhusudhan Rao, K. Narender, "Studies on Thermophysical Properties of CaO and MgO by Ray Attenuation", Journal of Thermodynamics, vol. 2014, Article ID 123478, 8 pages, 2014. https://doi.org/10.1155/2014/123478
Studies on Thermophysical Properties of CaO and MgO by Ray Attenuation
Abstract
The study on temperature dependent γray attenuation and thermophysical properties of CaO and MgO has been carried out in the temperature range 300 K–1250 K using different energies of γbeam, namely, Am (0.0595 MeV), Cs (0.66 MeV), and Co (1.173 MeV and 1.332 MeV) on γray densitometer fabricated in our laboratory. The linear attenuation coefficients (μ_{l}) for the pellets of CaO and MgO as a function of temperature have been determined using γbeam of different energies. The coefficients of temperature dependence of density have been reported. The variation of density and linear thermal expansion of CaO and MgO in the temperature range of 300 K–1250 K has been studied and compared with the results available in the literature. The temperature dependence of linear attenuation coefficients, density, and thermal expansion has been represented by second degree polynomial. Volume thermal expansion coefficients have been reported.
1. Introduction
Density and thermal expansion are fundamental thermophysical properties of solids. The study of temperature dependence of these properties is very important in understanding the temperature variation of other properties like elastic constants, refractive indices, dielectric constants, thermal conductivity, diffusion coefficients, and other heat transfer dimensionless numbers. Thermal expansion of solids is of technical importance as it determines the thermal stability and thermal shock resistance of the material. In general the thermal expansion characteristics decide the choice of material for the construction of metrological instruments and the choice of container material in nuclear fuel technology. A number of methods have evolved for the determination of density and thermal expansion of solids at high temperature like Archimedean method [1–3], pycnometry [4–8], dilatometry [9–12], electromagnetic levitation [13], method of maximal pressure in gas bubble [14–18], method of sessile drop [19], hydrostatic weighing [20, 21], high temperature electrostatic levitation [22], and gamma ray densitometry [23–34]. Using γray attenuation technique Drotning [23] measured thermal expansion of solid materials at high temperatures. He studied thermal expansion of aluminum and type 303 stainless steel at high temperatures and such studies have been extended by him to study the thermal expansion of metals and glasses in the condensed state [24]. The γradiation attenuation technique for the determination of thermophysical properties in the condensed state has several advantages over other methods at high temperatures. This is possible because the γray is not in any kind of physical or thermal contact with the material and hence the thermal losses are also reduced and in addition eliminate sample and probe compatibility problem.
We extended, for the first time, the γray attenuation technique, to carry out the studies on temperature dependence of γray attenuation and thermophysical properties of CaO and MgO. In the present communication, we report the temperature dependence of linear attenuation coefficient for different energies of γbeam [Am (0.0595 MeV), Cs (0.66 MeV), Co (1.173 MeV and 1.332 MeV)], density, and thermal expansion of CaO and MgO in the temperature range 300 K–1250 K. In order to carry out this work, we have fabricated in our laboratory a γray densitometer and a programmable temperature controlled furnace (PTC) which can reach high temperatures. The data obtained in the present work for coefficient of linear thermal expansion of CaO and MgO as a function of temperature have been compared with experimental and theoretical data in the literature. Authors have carried out such studies on different materials like wrought aluminum alloys [29] and alkali halides [30] using the same experimental setup.
2. Theory
The technique of γray attenuation method is based on the following fundamental equation: where is the intensity of γray before passing through the sample, is the intensity of γray after passing through the sample, is the mass attenuation coefficient of the sample, is the density of the sample, and is the thickness of the sample. It is clear from (1) that any change in the temperature of the solid is accompanied by change in its density causing a change in the measured intensity. The density and thermal expansion of the materials studied in the present work have been determined following the method suggested by Drotning [23]. The relation between coefficient of volumetric thermal expansion () and coefficient of linear thermal expansion () is given by where and are mean values over a temperature interval: where , , and so forth.
Rewrite (2) as where is defined by Substituting for from (2) gives which can be rewritten as where The intensities of γradiation with sample and without sample are recorded at every temperature. At room temperature , thickness of the sample is measured and using (1) is determined. Further measurements of and at different temperatures enable the determination of by (5) and hence can be found from the solution of (7). From the value of , mean linear thermal expansion () can be determined as a function of temperature.
3. Experimental
The experimental setup used for determination of density of materials utilizing γray attenuation technique is called a γray densitometer. A programmable temperature controlled furnace with sample inside the air tight quartz tube is introduced in the γradiation path allowing the beam to pass through the sample and to the detector without any interruption. The temperature of the sample is varied to study the attenuation at various temperatures. The block diagram of γray densitometer used in the present work is shown in Figure 1.
The samples studied in the present work were in the form of pellets. The weight of the powder is 20.0 gm and the thickness of pellet is 1.40 cm with a die set by applying hydraulic press. CaO and MgO pellets were sintered at a temperature of 600 K for densification. The pellet was then firmly mounted on the round sample holder made of flat stainless steel strip inserted into an air tight quartz tube. The sample holder along with the sample was slid through a cork into an air tight quartz tube and was fixed firmly. A diffusion pump was then connected to the sample holder tube for evacuation. For inert atmosphere, argon gas was introduced into the quartz tube through the sample holder tube. Then the quartz tube assembly along with the sample was slid into the programmable temperature controlled (PTC) furnace and fixed at appropriate position ensuring a perfect alignment of sample with collimation on either side. A programmable temperature controlled furnace with sample inside the air tight quartz tube is introduced in the γradiation path allowing the beam to pass through the sample and to the detector without any interruption. The temperature of the sample is varied to study the attenuation at various temperatures. The PTC furnace was programmed in such a way that the furnace temperature is increased by 50 K in every step starting from room temperature and stabilizes there for 5 minutes. Temperature equilibrium is achieved within 5 minutes and temperature accuracy is ±1% of set point temperature after stabilization. Heating rate between each step of 50 K is 5 K/min. At each temperature the γray counts of photon energies [0.0595 MeV, 0.662 MeV, and 1.173 MeV and 1.332 MeV] emitted by 10 mCi ^{241}Am, 30 mci ^{137}Cs, and 11.73 Ci ^{60}Co radioactive point sources, respectively, with sample () and without sample () were detected and recorded using a multichannel analyzer. The recording of γray counts was done for a period of 20 minutes at each programmed temperature. After a time of 20 minutes of isothermal holding, the difference of programmed and sample temperature (error) was ±1 K of set point. Measurement of γray attenuation counts at every step of temperature was repeated before and after the sample was introduced and the average value was considered in all our calculations. The cooling rate varied between 10 K/min from 1300 K to 800 K, 6 K/min from 800 K to 500 K, 4 K/min from 500 K to 400 K, and 2 K/min thereafter up to 300 K. The γray counts were recorded while heating and cooling the sample. This procedure was repeated until the desired temperature range was covered in each case. The gamma radiation detector used in our study is a sodium iodidethallium activated detector. The 0.0762 m diameter and 0.0762 m thick crystal are integrally coupled to a 0.0762 m diameter photomultiplier tube (PMT). The PMT has a 14pin base and can be mounted on two types of PMT preamplifier units. The one used in our study is a coaxial inline preamplifier. The detector has a resolution of 8.5% for 0.662 MeV of ^{137}Cs.
4. Results and Discussion
The experimentally determined values of mass attenuation coefficients () of CaO and MgO for γbeam of different energies are compared with the theoretical values obtained from National Institute of Standards and Technology (NISTXCOM) in Table 1. The results obtained for the temperature dependence of the linear attenuation coefficients (L) of CaO and MgO for γbeam of different energies are summarized in Table 2. The results obtained for the temperature dependence of the density () and the coefficient of linear thermal expansion () of CaO and MgO are presented in Table 3. The measurements have been carried out in solid phase only. The experimental data obtained in the present work for the density, the linear attenuation coefficient, and coefficient of linear thermal expansion have been fit to a least squares quadratic polynomial of the following form: Since the measurements have been made in the limited temperature range the coefficient of volumetric thermal expansion (CVTE) was calculated using the following equation: where is the first derivative of density with respect to the absolute temperature which is determined from (9). The variation of linear attenuation coefficients of CaO and MgO with temperature for γbeam of different energies is shown in Figures 2 and 3, respectively. The variation of density and linear thermal expansion with temperature of CaO and MgO has been shown in Figures 4 and 5, respectively.



4.1. CaO
The temperature dependence of linear attenuation coefficient of CaO is a negative linear function of temperature. The temperature dependence of linear attenuation coefficient for different energies of γbeam [Am (0.0595 MeV), Cs (0.66 MeV), and Co (1.173 MeV and 1.332 MeV)] has been represented by second degree polynomial, respectively: The density of CaO decreases from a value of 3350 kgm^{−3} at 300 K to a value of 3234 kgm^{−3} at 1250 K with a decrease of about 1.16%. The temperature dependence of density is a negative linear function of temperature. For CaO the temperature dependence of density is represented by quadratic equation: The coefficient of temperature dependence of density is −0.122 kgm^{−3} K^{−1} and the coefficient of volume thermal expansion is 4.0 × 10^{−5} K^{−1} in the temperature range 300 K–1250 K. The thermal expansion increases linearly with temperature and the results on thermal expansion in the temperature range from 300 K to 1250 K have been analyzed by least squares method and are represented by the following polynomial equation: The coefficient of linear thermal expansion () of CaO in the temperature range 300 K–1250 K has been represented by second degree polynomial and has been shown in Figure 6 along with data obtained by other methods for comparison:
4.2. MgO
The temperature dependence of linear attenuation coefficient of MgO is a negative linear function of temperature. The temperature dependence of linear attenuation coefficient for different energies of γbeam [Am (0.0595 MeV), Cs (0.66 MeV), and Co (1.173 MeV and 1.332 MeV)] has been represented by second degree polynomial, respectively: The density of MgO decreases from a value of 3580 kgm^{−3} at 300 K to a value of 3445 kgm^{−3} at 1250 K with a decrease of about 1.35%. The temperature dependence of density is a negative linear function of temperature. For MgO the temperature dependence of density is represented by the following quadratic equation: The coefficient of temperature dependence of density is −0.142 kgm^{−3} K^{−1} and the coefficient of volume thermal expansion is 4.0 × 10^{−5} K^{−1}. The thermal expansion increases linearly with temperature and the results on thermal expansion in the temperature range from 300 K to 1250 K have been analyzed by least squares method and are represented by the following equation: The coefficient of linear thermal expansion () of MgO in the temperature range 300 K–1250 K has been represented by second degree polynomial and has been shown in Figure 7 along with data obtained by other methods for comparison:
The decrease in density in CaO and MgO with temperature can be attributed to the increase in the equilibrium concentration of thermally generated Schottky defects. Another source of generation of defects in CaO and MgO is the irradiation with γrays as the technique used in the present study is γattenuation technique. However, the values of density seem to have not been affected much by irradiation of γrays since the values of coefficient of linear thermal expansion at different temperatures obtained in the present work agree well with data reported in the literature from other methods [35–38] as shown in Figures 6 and 7, respectively. However, the results on variation of density and linear attenuation coefficient of the samples with temperature are not available from other methods for comparison. The uncertainty in the measured physical parameters depends on uncertainty in the furnace temperature and measurement of the mass attenuation coefficient, which has been estimated from errors in intensities , and thickness using the following relation [39–41]: where , , and are the errors in the intensities , and thickness , respectively. In this experiment, the intensities and have been recorded for the same time and under the same experimental conditions. Estimated error in these measurements was around 2%.
5. Conclusions
The pellets were prepared with fine powder of CaO and MgO with a diameter of 20 mm with varying thicknesses with a die set by applying hydraulic press. The γray attenuation measurements of CaO and MgO have been made using γbeam of different energy sources on a γray densitometer. The results on the variation of density and linear thermal expansion with temperature of both the pellets are found to be equal for all the γenergy sources. The results on the variation of linear attenuation coefficient, density, and linear thermal expansion with temperature of these pellets have been reported and these variations have been represented by quadratic equations. The results on these pellets by using γray attenuation technique are being reported for the first time.
Conflict of Interests
The authors hereby declare that there is no issue of any type of conflict of interests in any manner.
Acknowledgment
The authors thank University Grants Commission (UGC), New Delhi, for the financial assistance through Special Assistance Programme (SAP) no. F.530/8/DRS/2009 (SAP1).
References
 B. B. Alchagirov and A. M. Chochaeva, “Temperature dependence of the density of liquid tin,” High Temperature, vol. 38, no. 1, pp. 44–48, 2000. View at: Google Scholar
 L. Wang, Q. Wang, A. Xian, and K. Lu, “Precise measurement of the densities of liquid Bi, Sn, Pb and Sb,” Journal of Physics: Condensed Matter, vol. 15, no. 6, pp. 777–783, 2003. View at: Publisher Site  Google Scholar
 X. Chen, Q. Wang, and K. Lu, “Temperature and time dependence of the density of molten indium antimonide measured by an improved archimedean method,” Journal of Physics: Condensed Matter, vol. 11, no. 50, pp. 10335–10341, 1999. View at: Publisher Site  Google Scholar
 B. B. Alchagirov, A. G. Mozgovoy, T. M. Taova, and T. A. Sizhahzev, Advanced Materials, vol. 6, no. 35, 2005.
 B. B. Alchagirov, T. M. Shamparov, and A. G. Mozgovoi, “Experimental investigation of the density of molten leadbismuth eutectic,” High Temperature, vol. 41, no. 2, pp. 210–215, 2003. View at: Publisher Site  Google Scholar
 A. F. Crawley, “Densities and viscosities of some liquid alloys of zinc and cadmium,” Metallurgical Transactions B, vol. 3, no. 4, pp. 971–975, 1972. View at: Google Scholar
 K. Mukai, F. Xiao, K. Nogi, and Z. Li, “Measurement of the density of Ni–Cr alloy by a modified pycnometric method,” Materials Transactions, vol. 45, no. 7, pp. 2357–2363, 2004. View at: Google Scholar
 Y. Sato, T. Nishizuka, K. Hara, T. Yamamura, and Y. Waseda, “Density measurement of molten silicon by a pycnometric method,” International Journal of Thermophysics, vol. 21, no. 6, pp. 1463–1471, 2000. View at: Publisher Site  Google Scholar
 U. Jauch, G. Hasse, and B. Schulz, “Part 11: thermophysical properties of Li(17)Pb(83) eutectic alloy,” in Thermophysical Properties in the System LiPb, vol. 25, Kernforschungszentrum Karlsruhe, Karlsruhe, Germany, 1986. View at: Google Scholar
 L. Wang and Q. Mei, “Density measurement of liquid metals using dilatometer,” Journal of Materials Science & Technology, vol. 22, no. 4, pp. 569–571, 2006. View at: Google Scholar
 G. K. White and J. G. Collins, “The thermal expansion of alkali halides at low temperatures. II. Sodium, rubidium and caesium halides,” Proceedings of the Royal Society A: Mathematical, Physical & Engineering Sciences, vol. 333, pp. 237–259, 1973. View at: Publisher Site  Google Scholar
 “Pbfree solders and other materials,” Journal of Electronic Materials, 2011. View at: Google Scholar
 J. Brillo, I. Egry, and I. Ho, “Density and thermal expansion of liquid Ag–Cu and Ag–Au alloys,” International Journal of Thermophysics, vol. 27, no. 2, pp. 494–506, 2006. View at: Publisher Site  Google Scholar
 S. A. Been, H. S. Edwards, C. E. Tecter, and V. P. Calkins, “ORNL: fairchild and airplane corporation,” NEPA Report 1585, 1950. View at: Google Scholar
 Fairchild Engine and Airplane Corporation, Oak Ridge, Tenn, USA.
 H. Ruppersberg and W. Speicher, “Density and compressibility of liquid Li–Pb alloys,” Zeitschrift Naturforschung Teil A, vol. 31, pp. 47–52, 1976. View at: Google Scholar
 J. Saar and H. Ruppersberg, “Calculation of ${\text{C}}_{\text{p}}$(T) for liquid Li/Pb alloys from experimental ρ(T) and (δp/δT)s data,” Journal of Physics F: Metal Physics, vol. 17, no. 2, pp. 305–314, 1987. View at: Publisher Site  Google Scholar
 F. T. Firdu and P. Taskinen, Aalto University Publications in Material Science and Engineering, Espoo TKKMT215, 2010.
 I. V. Kazakova, S. A. Lyamkyn, and B. M. Lepinskikh, The Journal of Physical Chemistry, vol. 58, p. 1534, 1984.
 N. A. Nikol’skyi, N. A. Kalakutskaya, I. M. Pehelkin, T. V. Klassen, and V. A. Vel’mishcheva, “Teploenergetika (Power Engineering),” vol. 2, no. 92, 1959. View at: Google Scholar
 N. A. Nikol’skyi, N. A. Kalakutskaya, I. M. Pehelkin, T. V. Klassen, and V. A. Vel’mishcheva, “Voprocsy teploobmena,” Problems of Heat Transfer. View at: Google Scholar
 S. K. Chung, D. B. Thiessen, and W.K. Rhim, “A noncontact measurement technique for the density and thermal expansion coefficient of solid and liquid materials,” Review of Scientific Instruments, vol. 67, no. 9, pp. 3175–3181, 1996. View at: Google Scholar
 W. D. Drotning, “Thermal expansion of solids at high temperatures by the gamma attenuation technique,” Review of Scientific Instruments, vol. 50, no. 12, Article ID 121567, pp. 1567–1570, 1979. View at: Publisher Site  Google Scholar
 W. D. Drotning, “Thermal expansion of the group IIb liquid metals zinc, cadmium and mercury,” Journal of The LessCommon Metals, vol. 96, pp. 223–227, 1984. View at: Google Scholar
 W. D. Drotning, “Thermal expansion of iron, cobalt, nickel, and copper at temperatures up to 600 K above melting,” High TemperaturesHigh Pressures, vol. 13, no. 4, pp. 441–458, 1981. View at: Google Scholar
 G. M. Kalinin et al., “Study of Lil7–Pb83 eutectic properties,” USSR Contribution to ITER. In press. View at: Google Scholar
 R. A. Khairulin, A. S. Kosheleva, and S. V. Stankus, “Thermal properties of liquid alloys of magnesiumlead system,” Thermophysics and Aeromechanics, vol. 14, no. 1, pp. 75–80, 2007. View at: Publisher Site  Google Scholar
 R. A. Khairulin, S. V. Stankus, R. N. Abdullaev, Y. A. Plevachuk, and K. Y. Shunyaev, “The density and the binary diffusion coefficients of silvertin melts,” Thermophysics and Aeromechanics, vol. 17, no. 3, pp. 391–396, 2010. View at: Publisher Site  Google Scholar
 K. Narender, A. S. M. Rao, K. G. K. Rao, and N. G. Krishna, “Thermo physical properties of wrought aluminum alloys 6061, 2219 and 2014 by gamma ray attenuation method,” Thermochimica Acta, vol. 569, pp. 90–96, 2013. View at: Publisher Site  Google Scholar
 A. S. M. Rao, K. Narender, K. G. K. Rao, and N. G. Krishna, “Thermophysical properties of rubidium and lithium halides by gamma ray attenuation technique,” High Temperature. In press. View at: Google Scholar
 S. V. Stankus, R. A. Khairulin, A. G. Mozgovoy, V. V. Roshchupkin, and M. A. Pokrasin, “The density and thermal expansion of eutectic alloys of lead with bismuth and lithium in condensed state,” Journal of Physics: Conference Series, vol. 98, no. 6, Article ID 062017, 2008. View at: Publisher Site  Google Scholar
 S. V. Stankus and P. V. Tyagel’skii, “Density of highpurity dysprosium in the solid and liquid states,” High Temperature, vol. 38, no. 4, pp. 555–559, 2000. View at: Publisher Site  Google Scholar
 S. V. Stankus, R. A. Khairulin, A. G. Mozgovoi, V. V. Roshchupkin, and M. A. Pokrasin, “An experimental investigation of the density of bismuth in the condensed state in a wide temperature range,” High Temperature, vol. 43, no. 3, pp. 368–378, 2005. View at: Publisher Site  Google Scholar
 S. V. Stankus, R. A. Khairulin, and A. G. Mozgovoi, “Experimental study of density and thermal expansion of the advanced materials and heat transfer agents for liquid metal systems of thermonuclear reactor: lithium,” High Temperature, vol. 49, no. 2, pp. 187–192, 2011. View at: Publisher Site  Google Scholar
 S. K. Srivastava, P. Sinha, and M. Panwar, “Thermal expansivity and isothermal bulk modulus of ionic materials at high temperatures,” Indian Journal of Pure & Applied Physics, vol. 47, no. 3, pp. 175–179, 2009. View at: Google Scholar
 K. Y. Singh and B. R. K. Gupta, “A simple approach to analyse the thermal expansion in minerals under the effect of high temperature,” Physica B: Condensed Matter, vol. 334, no. 34, pp. 266–271, 2003. View at: Publisher Site  Google Scholar
 B. P. Singh, H. Chandra, R. Shyam, and A. Singh, “Analysis of volume expansion data for periclase, lime, corundum and spinel at high temperatures,” Bulletin of Materials Science, vol. 35, no. 4, pp. 631–637, 2012. View at: Publisher Site  Google Scholar
 R. E. Taylor, Thermal Expansion of Solids, ASM International, Materials Park, Ohio, USA, 1998.
 I. Han and L. Demir, “Studies on effective atomic numbers, electron densities and mass attenuation coefficients in Au alloys,” Journal of XRay Science and Technology, vol. 18, no. 1, pp. 39–46, 2010. View at: Publisher Site  Google Scholar
 D. Demir, A. Turşucu, and T. Öznülüer, “Studies on mass attenuation coefficient, effective atomic number and electron density of some vitamins,” Radiation and Environmental Biophysics, vol. 51, no. 4, pp. 469–475, 2012. View at: Publisher Site  Google Scholar
 N. Kucuk, Z. Tumsavas, and M. Cakir, “Determining photon energy absorption parameters for different soil samples,” Journal of Radiation Research, vol. 54, no. 3, pp. 578–586, 2013. View at: Publisher Site  Google Scholar
Copyright
Copyright © 2014 A. S. Madhusudhan Rao and K. Narender. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.