Table of Contents Author Guidelines Submit a Manuscript
Journal of Tropical Medicine
Volume 2013, Article ID 890603, 32 pages
http://dx.doi.org/10.1155/2013/890603
Review Article

Proteases from Entamoeba spp. and Pathogenic Free-Living Amoebae as Virulence Factors

Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional 2508, 07360 México, DF, Mexico

Received 25 September 2012; Accepted 28 November 2012

Academic Editor: Carlos E. P. Corbett

Copyright © 2013 Jesús Serrano-Luna et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Pawlowski and F. Burki, “Untangling the phylogeny of amoeboid protists,” Journal of Eukaryotic Microbiology, vol. 56, no. 1, pp. 16–25, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. A. J. Roger and L. A. Hug, “The origin and diversification of eukaryotes: problems with molecular phylogenetics and molecular clock estimation,” Philosophical Transactions of the Royal Society B, vol. 361, no. 1470, pp. 1039–1054, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. T. F. H. G. Jackson, “Entamoeba histolytica and Entamoeba dispar are distinct species; clinical, epidemiological and serological evidence,” International Journal for Parasitology, vol. 28, no. 1, pp. 181–186, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. S. A. Tengku and M. Norhayati, “Public health and clinical importance of amoebiasis in Malaysia: a review,” Tropical Biomedicine, vol. 28, no. 2, pp. 194–222, 2011. View at Google Scholar
  5. M. Romeralo, R. Escalante, and S. L. Baldauf, “Evolution and diversity of dictyostelid social amoebae,” Protist, vol. 163, no. 3, pp. 327–343, 2012. View at Google Scholar
  6. H. Scholze and W. Schulte, “On the specificity of a cysteine proteinase from Entamoeba histolytica,” Biomedica Biochimica Acta, vol. 47, no. 2, pp. 115–123, 1988. View at Google Scholar · View at Scopus
  7. A. L. Luaces and A. J. Barrett, “Affinity purification and biochemical characterization of histolysin, the major cysteine proteinase of Entamoeba histolytica,” Biochemical Journal, vol. 250, no. 3, pp. 903–909, 1988. View at Google Scholar · View at Scopus
  8. R. Ocádiz, E. Orozco, E. Carrillo et al., “EhCP112 is an Entamoeba histolytica secreted cysteine protease that may be involved in the parasite-virulence,” Cellular Microbiology, vol. 7, no. 2, pp. 221–232, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Hellberg, N. Nowak, M. Leippe, E. Tannich, and I. Bruchhaus, “Recombinant expression and purification of an enzymatically active cysteine proteinase of the protozoan parasite Entamoeba histolytica,” Protein Expression and Purification, vol. 24, no. 1, pp. 131–137, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Thibeaux, A. Dufour, P. Roux, M. Bernier, A. C. Baglin, and P. Frileux, “Newly visualized fibrillar collagen scaffolds dictate Entamoeba histolytica invasion route in the human colon,” Cellular Microbiology, vol. 14, no. 5, pp. 609–621, 2012. View at Google Scholar
  11. W. E. Keene, M. G. Petitt, S. Allen, and J. H. McKerrow, “The major neutral proteinase of Entamoeba histolytica,” Journal of Experimental Medicine, vol. 163, no. 3, pp. 536–549, 1986. View at Google Scholar · View at Scopus
  12. J. De Jesús Serrano, M. De La Garza, M. A. Moreno et al., “Entamoeba histolytica: electron-dense granule secretion, collagenase activity and virulence are altered in the cytoskeleton mutant BG-3,” Molecular Microbiology, vol. 11, no. 4, pp. 787–792, 1994. View at Publisher · View at Google Scholar · View at Scopus
  13. W. Schulte and H. Scholze, “Action of the major protease from Entamoeba histolytica on proteins of the extracellular matrix,” Journal of Protozoology, vol. 36, no. 6, pp. 538–543, 1989. View at Google Scholar · View at Scopus
  14. C. He, G. P. Nora, E. L. Schneider et al., “A novel Entamoeba histolytica cysteine proteinase, EhCP4, is key for invasive amebiasis and a therapeutic target,” Journal of Biological Chemistry, vol. 285, no. 24, pp. 18516–18527, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. J. De Jesús Serrano, M. De La Garza, M. Reyes, G. León, R. Tovar, and M. De Lourdes Muñoz, “Entamoeba histolytica: proteinase secretion induced by collagen type I is dependent on cytoskeleton integrity,” Parasitology Research, vol. 82, no. 3, pp. 200–205, 1996. View at Publisher · View at Google Scholar · View at Scopus
  16. B. L. Kelsall and J. I. Ravdin, “Degradation of human IgA by Entamoeba histolytica,” Journal of Infectious Diseases, vol. 168, no. 5, pp. 1319–1322, 1993. View at Google Scholar · View at Scopus
  17. S. G. Meléndez-López, S. Herdman, K. Hirata et al., “Use of recombinant Entamoeba histolytica cysteine proteinase 1 to identify a potent inhibitor of amebic invasion in a human colonic model,” Eukaryotic Cell, vol. 6, no. 7, pp. 1130–1136, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. S. L. Reed, W. E. Keene, J. H. McKerrow, and I. Gigli, “Cleavage of C3 by a neutral cysteine proteinase of Entamoeba histolytica,” Journal of Immunology, vol. 143, no. 1, pp. 189–195, 1989. View at Google Scholar · View at Scopus
  19. S. L. Reed, J. A. Ember, D. S. Herdman, R. G. DiScipio, T. E. Hugli, and I. Gigli, “The extracellular neutral cysteine proteinase of Entamoeba histolytica degrades anaphylatoxins C3a and C5a,” Journal of Immunology, vol. 155, no. 1, pp. 266–274, 1995. View at Google Scholar · View at Scopus
  20. X. Que, S. H. Kim, M. Sajid et al., “A surface amebic cysteine proteinase inactivates interleukin-18,” Infection and Immunity, vol. 71, no. 3, pp. 1274–1280, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Li, W. G. Yang, T. Zhang, and S. L. Stanley, “Interaction of laminin with Entamoeba histolytica cysteine proteinases and its effect on amebic pathogenesis,” Infection and Immunity, vol. 63, no. 10, pp. 4150–4153, 1995. View at Google Scholar · View at Scopus
  22. Z. Zhang, L. Wang, K. B. Seydel et al., “Entamoeba histolytica cysteine proteinases with interleukin-1 beta converting enzyme (ICE) activity cause intestinal inflammation and tissue damage in amoebiasis,” Molecular Microbiology, vol. 37, no. 3, pp. 542–548, 2000. View at Google Scholar · View at Scopus
  23. J. McLaughlin and G. Faubert, “Partial purification and some properties of a neutral sulfhydryl and an acid proteinase from Entamoeba histolytica,” Canadian Journal of Microbiology, vol. 23, no. 4, pp. 420–425, 1977. View at Google Scholar · View at Scopus
  24. R. Perez-Montfort, P. Ostoa-Saloma, L. Velazquez-Medina, I. Montfort, and I. Becker, “Catalytic classes of proteinases of Entamoeba histolytica,” Molecular and Biochemical Parasitology, vol. 26, no. 1-2, pp. 87–97, 1987. View at Google Scholar · View at Scopus
  25. W. B. Lushbaugh, A. F. Hofbauer, and A. A. Kairalla, “Relationship of cytotoxins of axenically cultivated Entamoeba histolytica to virulence,” Gastroenterology, vol. 86, no. 6, pp. 1488–1495, 1984. View at Google Scholar · View at Scopus
  26. W. B. Lushbaugh, A. F. Hofbauer, and F. E. Pittman, “Entamoeba histolytica: purification of cathepsin B,” Experimental Parasitology, vol. 59, no. 3, pp. 328–336, 1985. View at Google Scholar · View at Scopus
  27. J. De Jesús Serrano-Luna, E. Negrete, M. Reyes, and M. De La Garza, “Entamoeba histolytica HM1:IMSS: hemoglobin-degrading neutral cysteine proteases,” Experimental Parasitology, vol. 89, no. 1, pp. 71–77, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Reyes-López, R. M. Bermúdez-Cruz, E. E. Avila, and M. De La Garza, “Acetaldehyde/alcohol dehydrogenase-2 (EhADH2) and clathrin are involved in internalization of human transferrin by Entamoeba histolytica,” Microbiology, vol. 157, no. 1, pp. 209–219, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. N. León-Sicairos, M. Reyes-López, A. Canizalez-Román et al., “Human hololactoferrin: endocytosis and use as an iron source by the parasite Entamoeba histolytica,” Microbiology, vol. 151, no. 12, pp. 3859–3871, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. F. López-Soto, A. González-Robles, L. Salazar-Villatoro et al., “Entamoeba histolytica uses ferritin as an iron source and internalises this protein by means of clathrin-coated vesicles,” International Journal for Parasitology, vol. 39, no. 4, pp. 417–426, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Moncada, K. Keller, S. Ankri, D. Mirelman, and K. Chadee, “Antisense inhibition of Entamoeba histolytica cysteine proteases inhibits colonic mucus degradation,” Gastroenterology, vol. 130, no. 3, pp. 721–730, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Perez-Tamayo, I. Becker, I. Montfort, P. Ostoa-Saloma, and R. Perez-Montfort, “Role of leukocytes and amebic proteinases in experimental rat testicular necrosis produced by Entamoeba histolytica,” Parasitology Research, vol. 77, no. 3, pp. 192–196, 1991. View at Google Scholar · View at Scopus
  33. R. Lopez-Revilla and M. Baez-Camargo, “Immediate autoproteolysis and new proteinases in Entamoeba invadens and Entamoeba moshkovskii trophozoites,” Archives of Medical Research, vol. 23, no. 2, pp. 95–97, 1992. View at Google Scholar · View at Scopus
  34. V. Kissoon-Singh, L. Mortimer, and K. Chadee, “Entamoeba histolytica cathepsin-like enzymes: interactions with the host gut,” Advances in Experimental Medicine and Biology, vol. 712, pp. 62–83, 2011. View at Google Scholar
  35. I. Bruchhaus, T. Jacobs, M. Leippe, and E. Tannich, “Entamoeba histolytica and Entamoeba dispar: differences in numbers and expression of cysteine proteinase genes,” Molecular Microbiology, vol. 22, no. 2, pp. 255–263, 1996. View at Google Scholar · View at Scopus
  36. A. Makioka, M. Kumagai, S. Kobayashi, and T. Takeuchi, “Entamoeba invadens: cysteine protease inhibitors block excystation and metacystic development,” Experimental Parasitology, vol. 109, no. 1, pp. 27–32, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Makioka, M. Kumagai, S. Kobayashi, and T. Takeuchi, “Involvement of serine proteases in the excystation and metacystic development of Entamoeba invadens,” Parasitology Research, vol. 105, no. 4, pp. 977–987, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Sharma, K. Hirata, S. Herdman, and S. Reed, “Entamoeba invadens: characterization of cysteine proteinases,” Experimental Parasitology, vol. 84, no. 1, pp. 84–91, 1996. View at Publisher · View at Google Scholar · View at Scopus
  39. Y. Riahi and S. Ankri, “Involvement of serine proteinases during encystation of Entamoeba invadens,” Archives of Medical Research, vol. 31, no. 4, pp. S187–S189, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Scholze and W. Schulte, “Purification and partial characterization of the major cysteine protease from Entamoeba invadens,” Biomedica Biochimica Acta, vol. 49, no. 6, pp. 455–463, 1990. View at Google Scholar · View at Scopus
  41. F. R. De Souza Carvalho, L. C. Carrijo-Carvalho, A. M. Chudzinski-Tavassi, A. S. Foronda, and D. de Freitas, “Serine-like proteolytic enzymes correlated with differential pathogenicity in patients with acute Acanthamoeba keratitis,” Clinical Microbiology and Infection, vol. 17, no. 4, pp. 603–609, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. B. K. Na, J. C. Kim, and C. Y. Song, “Characterization and pathogenetic role of proteinase from Acanthamoeba castellanii,” Microbial Pathogenesis, vol. 30, no. 1, pp. 39–48, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Hurt, S. Neelam, J. Niederkorn, and H. Alizadeh, “Pathogenic Acanthamoeba spp. secrete a mannose-induced cytolytic protein that correlates with the ability to cause disease,” Infection and Immunity, vol. 71, no. 11, pp. 6243–6255, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Hurt, J. Niederkorn, and H. Alizadeh, “Effects of mannose on Acanthamoeba castellanii proliferation and cytolytic ability to corneal epithelial cells,” Investigative Ophthalmology and Visual Science, vol. 44, no. 8, pp. 3424–3431, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Sissons, S. Alsam, G. Goldsworthy, M. Lightfoot, E. L. Jarroll, and N. A. Khan, “Identification and properties of proteases from an Acanthamoeba isolate capable of producing granulomatous encephalitis,” BMC Microbiology, vol. 6, article 42, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. H. K. Kim, Y. R. Ha, H. S. Yu, H. H. Kong, and D. I. Chung, “Purification and characterization of a 33 kDa serine protease from Acanthamoeba lugdunensis KA/E2 isolated from a Korean keratitis patient,” The Korean Journal of Parasitology, vol. 41, no. 4, pp. 189–196, 2003. View at Google Scholar · View at Scopus
  47. J. D. J. Serrano-Luna, I. Cervantes-Sandoval, J. Calderón, F. Navarro-García, V. Tsutsumi, and M. Shibayama, “Protease activities of Acanthamoeba polyphaga and Acanthamoeba castellanii,” Canadian Journal of Microbiology, vol. 52, no. 1, pp. 16–23, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. K. Aldape, H. Huizinga, J. Bouvier, and J. McKerrow, “Naegleria fowleri: characterization of a secreted histolytic cysteine protease,” Experimental Parasitology, vol. 78, no. 2, pp. 230–241, 1994. View at Publisher · View at Google Scholar · View at Scopus
  49. I. Cervantes-Sandoval, J. D. J. Serrano-Luna, E. García-Latorre, V. Tsutsumi, and M. Shibayama, “Mucins in the host defence against Naegleria fowleri and mucinolytic activity as a possible means of evasion,” Microbiology, vol. 154, no. 12, pp. 3895–3904, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Serrano-Luna, I. Cervantes-Sandoval, V. Tsutsumi, and M. Shibayama, “A biochemical comparison of proteases from pathogenic Naegleria fowleri and non-pathogenic Naegleria gruberi,” Journal of Eukaryotic Microbiology, vol. 54, no. 5, pp. 411–417, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Matin, M. Stins, K. S. Kim, and N. A. Khan, “Balamuthia mandrillaris exhibits metalloprotease activities,” FEMS Immunology and Medical Microbiology, vol. 47, no. 1, pp. 83–91, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. G. S. Visvesvara, H. Moura, and F. L. Schuster, “Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea,” FEMS Immunology and Medical Microbiology, vol. 50, no. 1, pp. 1–26, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Martinez-Palomo, “The pathogenesis of amoebiasis,” Parasitology Today, vol. 3, no. 4, pp. 111–118, 1987. View at Google Scholar · View at Scopus
  54. C. Ximénez, “Epidemiology of amebiasis in Mexico: a molecular approach,” Archives of Medical Research, vol. 37, no. 2, pp. 263–265, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Espinosa-Cantellano and A. Martínez-Palomo, “Pathogenesis of intestinal amebiasis: from molecules to disease,” Clinical Microbiology Reviews, vol. 13, no. 2, pp. 318–331, 2000. View at Publisher · View at Google Scholar · View at Scopus
  56. S. L. Stanley Jr., “Amoebiasis,” Lancet, vol. 361, no. 9362, pp. 1025–1034, 2003. View at Publisher · View at Google Scholar · View at Scopus
  57. K. S. Ralston and W. A. Petri Jr., “Tissue destruction and invasion by Entamoeba histolytica,” Trends in Parasitology, vol. 27, no. 6, pp. 254–263, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. K. Prathap and R. Gilman, “The histopathology of acute intestinal amebiasis. A rectal biopsy study,” American Journal of Pathology, vol. 60, no. 2, pp. 229–246, 1970. View at Google Scholar · View at Scopus
  59. R. Arroyo and E. Orozoco, “Localization and identification of an Entamoeba histolytica adhesin,” Molecular and Biochemical Parasitology, vol. 23, no. 2, pp. 151–158, 1987. View at Google Scholar · View at Scopus
  60. G. García-Rivera, M. A. Rodríguez, R. Ocádiz et al., “Entamoeba histolytica: a novel cysteine protease and an adhesin form the 112 kDa surface protein,” Molecular Microbiology, vol. 33, no. 3, pp. 556–568, 1999. View at Publisher · View at Google Scholar · View at Scopus
  61. J. I. Ravdin, “Entamoeba histolytica: from adherence to enteropathy,” Journal of Infectious Diseases, vol. 159, no. 3, pp. 420–429, 1989. View at Google Scholar · View at Scopus
  62. W. A. Petri Jr. and J. I. Ravdin, “Cytopathogenicity of Entamoeba histolytica: the role of amebic adherence and contact-dependent cytolysis in pathogenesis,” European Journal of Epidemiology, vol. 3, no. 2, pp. 123–136, 1987. View at Publisher · View at Google Scholar · View at Scopus
  63. J. L. Rosales-Encina, I. Meza, A. Lopex-De-Leon, P. Talamas-Rohana, and M. Rojkind, “Isolation of a 220-kilodalton protein with lectin properties from a virulent strain of Entamoeba histolytica,” Journal of Infectious Diseases, vol. 156, no. 5, pp. 790–797, 1987. View at Google Scholar · View at Scopus
  64. W. A. Petri Jr., R. Haque, and B. J. Mann, “The bittersweet interface of parasite and host: lectin-carbohydrate interactions during human invasion by the parasite Entamoeba histolytica,” Annual Review of Microbiology, vol. 56, pp. 39–64, 2002. View at Publisher · View at Google Scholar · View at Scopus
  65. J. J. McCoy, B. J. Mann, and W. A. Petri Jr., “Adherence and cytotoxicity of Entamoeba histolytica or how lectins let parasites stick around,” Infection and Immunity, vol. 62, no. 8, pp. 3045–3050, 1994. View at Google Scholar · View at Scopus
  66. M. Leippe and H. J. Müller-Eberhard, “The pore-forming peptide of Entamoeba histolytica, the protozoan parasite causing human amoebiasis,” Toxicology, vol. 87, no. 1–3, pp. 5–18, 1994. View at Publisher · View at Google Scholar · View at Scopus
  67. J. I. Ravdin, F. Moreau, J. A. Sullivan, W. A. Petri Jr., and G. L. Mandell, “Relationship of free intracellular calcium to the cytolytic activity of Entamoeba histolytica,” Infection and Immunity, vol. 56, no. 6, pp. 1505–1512, 1988. View at Google Scholar · View at Scopus
  68. M. Leippe, S. Ebel, O. L. Schoenberger, R. D. Horstmann, and H. J. Muller-Eberhard, “Pore-forming peptide of pathogenic Entamoeba histolytica,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 17, pp. 7659–7663, 1991. View at Google Scholar · View at Scopus
  69. S. A. Long-Krug, K. J. Fischer, R. M. Hysmith, and J. I. Ravdin, “Phospholipase A enzymes of Entamoeba histolytica: description and subcellular localization,” Journal of Infectious Diseases, vol. 152, no. 3, pp. 536–541, 1985. View at Google Scholar · View at Scopus
  70. M. de la Torre, R. de la Hoz-Couturier, L. Landa, and B. Sepulveda, “Cultivos axenicos de Entamoeba histolytica,” Archivos de Investigación Médica, vol. 2, supplement 1, pp. 165–172, 1971. View at Google Scholar
  71. S. Ankri, T. Stolarsky, R. Bracha, F. Padilla-Vaca, and D. Mirelman, “Antisense inhibition of expression of cysteine proteinases affects Entamoeba histolytica-induced formation of liver abscess in hamsters,” Infection and Immunity, vol. 67, no. 1, pp. 421–422, 1999. View at Google Scholar · View at Scopus
  72. R. Bracha, Y. Nuchamowitz, M. Anbar, and D. Mirelman, “Transcriptional silencing of multiple genes in trophozoites of Entamoeba histolytica,” PLoS Pathogens, vol. 2, no. 5, article e48, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. I. Bruchhaus, B. J. Loftus, N. Hall, and E. Tannich, “The intestinal protozoan parasite Entamoeba histolytica contains 20 cysteine protease genes, of which only a small subset is expressed during in vitro cultivation,” Eukaryotic Cell, vol. 2, no. 3, pp. 501–509, 2003. View at Publisher · View at Google Scholar · View at Scopus
  74. J. H. McKerrow, E. Sun, P. J. Rosenthal, and J. Bouvier, “The proteases and pathogenicity of parasitic protozoa,” Annual Review of Microbiology, vol. 47, pp. 821–853, 1993. View at Google Scholar · View at Scopus
  75. X. Que, L. S. Brinen, P. Perkins et al., “Cysteine proteinases from distinct cellular compartments are recruited to phagocytic vesicles by Entamoeba histolytica,” Molecular and Biochemical Parasitology, vol. 119, no. 1, pp. 23–32, 2002. View at Publisher · View at Google Scholar · View at Scopus
  76. A. E. Eakin, J. Bouvier, J. A. Sakanari, C. S. Craik, and J. H. McKerrow, “Amplification and sequencing of genomic DNA fragments encoding cysteine proteases from protozoan parasites,” Molecular and Biochemical Parasitology, vol. 39, no. 1, pp. 1–8, 1990. View at Publisher · View at Google Scholar · View at Scopus
  77. S. Reed, J. Bouvier, A. S. Pollack et al., “Cloning of a virulence factor of Entamoeba histolytica. Pathogenic strains possess a unique cysteine proteinase gene,” Journal of Clinical Investigation, vol. 91, no. 4, pp. 1532–1540, 1993. View at Google Scholar · View at Scopus
  78. M. Tillack, L. Biller, H. Irmer et al., “The Entamoeba histolytica genome: primary structure and expression of proteolytic enzymes,” BMC Genomics, vol. 8, article 170, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. C. A. Gilchrist, E. Houpt, N. Trapaidze et al., “Impact of intestinal colonization and invasion on the Entamoeba histolytica transcriptome,” Molecular and Biochemical Parasitology, vol. 147, no. 2, pp. 163–176, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. H. Scholze and E. Werries, “A weakly acidic protease has a powerful proteolytic activity in Entamoeba histolytica,” Molecular and Biochemical Parasitology, vol. 11, pp. 293–300, 1984. View at Google Scholar · View at Scopus
  81. H. Scholze, J. Otte, and E. Werries, “Cysteine proteinase of Entamoeba histolytica—II. Identification of the major split position in bovine insulin B-chain,” Molecular and Biochemical Parasitology, vol. 18, no. 1, pp. 113–121, 1986. View at Google Scholar · View at Scopus
  82. H. Scholze and E. Werries, “Cysteine proteinase of Entamoeba histolytica—I. Partial purification and action on different enzymes,” Molecular and Biochemical Parasitology, vol. 18, no. 1, pp. 103–112, 1986. View at Google Scholar · View at Scopus
  83. E. Tannich, H. Scholze, R. Nickel, and R. D. Horstmann, “Homologous cysteine proteinases of pathogenic and nonpathogenic Entamoeba histolytica: differences in structure and expression,” Journal of Biological Chemistry, vol. 266, no. 8, pp. 4798–4803, 1991. View at Google Scholar · View at Scopus
  84. D. Mirelman, Y. Nuchamowitz, B. Böhm-Gloning, and B. Walderich, “A homologue of the cysteine proteinase gene (ACP1 or Eh-CPp3) of pathogenic Entamoeba histolytica is present in non-pathogenic E. dispar strains,” Molecular and Biochemical Parasitology, vol. 78, no. 1-2, pp. 47–54, 1996. View at Publisher · View at Google Scholar · View at Scopus
  85. K. K. Hirata, X. Que, S. G. Melendez-Lopez et al., “A phagocytosis mutant of Entamoeba histolytica is less virulent due to deficient proteinase expression and release,” Experimental Parasitology, vol. 115, no. 2, pp. 192–199, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. P. H. Davis, J. Schulze, and S. L. Stanley, “Transcriptomic comparison of two Entamoeba histolytica strains with defined virulence phenotypes identifies new virulence factor candidates and key differences in the expression patterns of cysteine proteases, lectin light chains, and calmodulin,” Molecular and Biochemical Parasitology, vol. 151, no. 1, pp. 118–128, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. T. Jacobs, I. Bruchhaus, T. Dandekar, E. Tannich, and M. Leippe, “Isolation and molecular characterization of a surface-bound proteinase of Entamoeba histolytica,” Molecular Microbiology, vol. 27, no. 2, pp. 269–276, 1998. View at Publisher · View at Google Scholar · View at Scopus
  88. E. M. Duncan, T. L. Muratore-Schroeder, R. G. Cook et al., “Cathepsin L proteolytically processes histone H3 during mouse embryonic stem cell differentiation,” Cell, vol. 135, no. 2, pp. 284–294, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. B. Goulet, A. Baruch, N. S. Moon et al., “A cathepsin L isoform that is devoid of a signal peptide localizes to the nucleus in S phase and processes the CDP/Cux transcription factor,” Molecular Cell, vol. 14, no. 2, pp. 207–219, 2004. View at Publisher · View at Google Scholar · View at Scopus
  90. G. Maubach, M. C. C. Lim, and L. Zhuo, “Nuclear cathepsin F regulates activation markers in rat hepatic stellate cells,” Molecular Biology of the Cell, vol. 19, no. 10, pp. 4238–4248, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. S. L. Reed, W. E. Keene, and J. H. McKerrow, “Thiol proteinase expression and pathogenicity of Entamoeba histolytica,” Journal of Clinical Microbiology, vol. 27, no. 12, pp. 2772–2777, 1989. View at Google Scholar · View at Scopus
  92. U. Willhoeft, L. Hamann, and E. Tannich, “A DNA sequence corresponding to the gene encoding cysteine proteinase 5 in Entamoeba histolytica is present and positionally conserved but highly degenerated in Entamoeba dispar,” Infection and Immunity, vol. 67, no. 11, pp. 5925–5929, 1999. View at Google Scholar · View at Scopus
  93. S. Ankri, T. Stolarsky, and D. Mirelman, “Antisense inhibition of expression of cysteine proteinases does not affect Entamoeba histolytica cytopathic or haemolytic activity but inhibits phagocytosis,” Molecular Microbiology, vol. 28, no. 4, pp. 777–785, 1998. View at Publisher · View at Google Scholar · View at Scopus
  94. M. A. R. Freitas, H. C. Fernandes, V. C. Calixto et al., “Entamoeba histolytica: cysteine proteinase activity and virulence. Focus on cysteine proteinase 5 expression levels,” Experimental Parasitology, vol. 122, no. 4, pp. 306–309, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. L. I. Quintas-Granados, E. Orozco, L. G. Brieba, R. Arroyo, and J. Ortega-López, “Purification, refolding and autoactivation of the recombinant cysteine proteinase EhCP112 from Entamoeba histolytica,” Protein Expression and Purification, vol. 63, no. 1, pp. 26–32, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. S. Carpeniseanu, K. Hirata, X. Que, E. Orozco, and S. L. Reed, “L6: a proteinase- and phagocytosis-deficient mutant of Entamoeba histolytica,” Archives of Medical Research, vol. 31, no. 4, pp. S237–S238, 2000. View at Publisher · View at Google Scholar · View at Scopus
  97. X. Madriz, M. B. Martínez, M. A. Rodríguez et al., “Expression in fibroblasts and in live animals of Entamoeba histolytica polypeptides EhCP112 and EhADH112,” Microbiology, vol. 150, no. 5, pp. 1251–1260, 2004. View at Google Scholar · View at Scopus
  98. C. Martínez-López, E. Orozco, T. Sánchez, R. M. García-Pérez, F. Hernández-Hernández, and M. A. Rodríguez, “The EhADH112 recombinant polypeptide inhibits cell destruction and liver abscess formation by Entamoeba histolytica trophozoites,” Cellular Microbiology, vol. 6, no. 4, pp. 367–376, 2004. View at Publisher · View at Google Scholar · View at Scopus
  99. M. A. Rodriguez, F. Hernandez, L. Santos, A. Valdez, and E. Orozco, “Entamoeba histolytica: molecules involved in the target cell-parasite relationship,” Molecular and Biochemical Parasitology, vol. 37, no. 1, pp. 87–100, 1989. View at Google Scholar · View at Scopus
  100. A. Brittingham, C. J. Morrison, W. R. McMaster, B. S. McGwire, K. P. Chang, and D. M. Mosser, “Role of the Leishmania surface protease gp63 in complement fixation, cell adhesion, and resistance to complement-mediated lysis,” Journal of Immunology, vol. 155, no. 6, pp. 3102–3111, 1995. View at Google Scholar · View at Scopus
  101. D. M. Mosser and A. Brittingham, “Leishmania, macrophages and complement: a tale of subversion and exploitation,” Parasitology, vol. 115, supplement, pp. S9–S23, 1997. View at Google Scholar
  102. W. A. Petri Jr., R. D. Smith, P. H. Schlesinger, C. F. Murphy, and J. I. Ravdin, “Isolation of the galactose-binding lectin that mediates the in vitro adherence of Entamoeba histolytica,” Journal of Clinical Investigation, vol. 80, no. 5, pp. 1238–1244, 1987. View at Google Scholar · View at Scopus
  103. S. L. Stanley, K. Tian, J. P. Koester, and E. Li, “The serine-rich Entamoeba histolytica protein is a phosphorylated membrane protein containing O-linked terminal N-acetylglucosamine residues,” Journal of Biological Chemistry, vol. 270, no. 8, pp. 4121–4126, 1995. View at Publisher · View at Google Scholar · View at Scopus
  104. J. E. Teixeira and C. D. Huston, “Participation of the serine-rich Entamoeba histolytica protein in amebic phagocytosis of apoptotic host cells,” Infection and Immunity, vol. 76, no. 3, pp. 959–966, 2008. View at Publisher · View at Google Scholar · View at Scopus
  105. W. E. Keene, M. E. Hidalgo, E. Orozco, and J. H. McKerrow, “Entamoeba histolytica: correlation of the cytopathic effect of virulent trophozoites with secretion of a cysteine proteinase,” Experimental Parasitology, vol. 71, no. 2, pp. 199–206, 1990. View at Publisher · View at Google Scholar · View at Scopus
  106. E. Bier, L. Y. Jan, and Y. N. Jan, “rhomboid, a gene required for dorsoventral axis establishment and peripheral nervous system development in Drosophila melanogaster,” Genes and Development, vol. 4, no. 2, pp. 190–203, 1990. View at Google Scholar · View at Scopus
  107. U. Mayer and C. Nüsslein-Volhard, “A group of genes required for pattern formation in the ventral ectoderm of the Drosophila embryo,” Genes & Development, vol. 2, no. 11, pp. 1496–1511, 1988. View at Google Scholar · View at Scopus
  108. J. M. Santos, A. Graindorge, and D. Soldati-Favre, “New insights into parasite rhomboid proteases,” Molecular and Biochemical Parasitology, vol. 182, no. 1-2, pp. 27–36, 2012. View at Google Scholar
  109. S. Urban and M. Freeman, “Substrate specificity of Rhomboid intramembrane proteases is governed by helix-breaking residues in the substrate transmembrane domain,” Molecular Cell, vol. 11, no. 6, pp. 1425–1434, 2003. View at Publisher · View at Google Scholar · View at Scopus
  110. L. A. Baxt, R. P. Baker, U. Singh, and S. Urban, “An Entamoeba histolytica rhomboid protease with atypical specificity cleaves a surface lectin involved in phagocytosis and immune evasion,” Genes and Development, vol. 22, no. 12, pp. 1636–1646, 2008. View at Publisher · View at Google Scholar · View at Scopus
  111. L. A. Baxt, E. Rastew, R. Bracha, D. Mirelman, and U. Singh, “Downregulation of an Entamoeba histolytica rhomboid protease reveals roles in regulating parasite adhesion and phagocytosis,” Eukaryotic Cell, vol. 9, no. 8, pp. 1283–1293, 2010. View at Publisher · View at Google Scholar · View at Scopus
  112. K. Karakasis, D. Taylor, and K. Ko, “Uncovering a link between a plastid translocon component and rhomboid proteases using yeast mitochondria-based assays,” Plant and Cell Physiology, vol. 48, no. 4, pp. 655–661, 2007. View at Publisher · View at Google Scholar · View at Scopus
  113. P. C. Brooks, S. Strömblad, L. C. Sanders et al., “Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin αvβ3,” Cell, vol. 85, no. 5, pp. 683–693, 1996. View at Publisher · View at Google Scholar · View at Scopus
  114. A. M. Lechner, I. Assfalg-Machleidt, S. Zahler et al., “RGD-dependent binding of procathepsin X to integrin α vβ3 mediates cell-adhesive properties,” Journal of Biological Chemistry, vol. 281, no. 51, pp. 39588–39597, 2006. View at Publisher · View at Google Scholar · View at Scopus
  115. A. Mondino and F. Blasi, “uPA and uPAR in fibrinolysis, immunity and pathology,” Trends in Immunology, vol. 25, no. 8, pp. 450–455, 2004. View at Publisher · View at Google Scholar · View at Scopus
  116. M. E. Papaconstantinou, C. J. Carrell, A. O. Pineda et al., “Thrombin functions through its RGD sequence in a non-canonical conformation,” Journal of Biological Chemistry, vol. 280, no. 33, pp. 29393–29396, 2005. View at Publisher · View at Google Scholar · View at Scopus
  117. Y. Hou, L. Mortimer, and K. Chadee, “Entamoeba histolytica cysteine proteinase 5 binds integrin on colonic cells and stimulates NFκB-mediated pro-inflammatory responses,” Journal of Biological Chemistry, vol. 285, no. 46, pp. 35497–35504, 2010. View at Publisher · View at Google Scholar · View at Scopus
  118. A. F. Horwitz, “Integrins and health,” Scientific American, vol. 276, no. 5, pp. 68–75, 1997. View at Google Scholar
  119. L. Mortimer and K. Chadee, “The immunopathogenesis of Entamoeba histolytica,” Experimental Parasitology, vol. 126, no. 3, pp. 366–380, 2010. View at Publisher · View at Google Scholar · View at Scopus
  120. A. Belley, K. Keller, M. Göettke, and K. Chadee, “Intestinal mucins in colonization and host defense against pathogens,” American Journal of Tropical Medicine and Hygiene, vol. 60, no. 4, pp. 10–15, 1999. View at Google Scholar · View at Scopus
  121. N. Asker, M. A. B. Axelsson, S. O. Olofsson, and G. C. Hansson, “Dimerization of the human MUC2 mucin in the endoplasmic reticulum is followed by a N-glycosylation-dependent transfer of the mono- and dimers to the Golgi apparatus,” Journal of Biological Chemistry, vol. 273, no. 30, pp. 18857–18863, 1998. View at Publisher · View at Google Scholar · View at Scopus
  122. A. Herrmann, J. R. Davies, G. Lindell et al., “Studies on the 'insoluble' glycoprotein complex from human colon: identification of reduction-insensitive MUC2 oligomers and C-terminal cleavage,” Journal of Biological Chemistry, vol. 274, no. 22, pp. 15828–15836, 1999. View at Publisher · View at Google Scholar · View at Scopus
  123. D. Bansal, P. Ave, S. Kerneis et al., “An ex vivo human intestinal model to study Entamoeba histolytica pathogenesis,” PLoS Neglected Tropical Diseases, vol. 3, no. 11, article e551, 2009. View at Publisher · View at Google Scholar · View at Scopus
  124. D. Moncada, K. Keller, and K. Chadee, “Entamoeba histolytica cysteine proteinases disrupt the polymeric structure of colonic mucin and alter its protective function,” Infection and Immunity, vol. 71, no. 2, pp. 838–844, 2003. View at Publisher · View at Google Scholar · View at Scopus
  125. M. E. Lidell, D. M. Moncada, K. Chadee, and G. C. Hansson, “Entamoeba histolytica cysteine protease cleave the MUC2 mucin in its C-terminal domain and dissolve the protective colonic mucus gel,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 24, pp. 9298–9303, 2006. View at Publisher · View at Google Scholar · View at Scopus
  126. D. Moncada, K. Keller, and K. Chadee, “Entamoeba histolytica-secreted products degrade colonic mucin oligosaccharides,” Infection and Immunity, vol. 73, no. 6, pp. 3790–3793, 2005. View at Publisher · View at Google Scholar · View at Scopus
  127. A. Debnath, J. S. Tashker, M. Sajid, and J. H. McKerrow, “Transcriptional and secretory responses of Entamoeba histolytica to mucins, epithelial cells and bacteria,” International Journal for Parasitology, vol. 37, no. 8-9, pp. 897–906, 2007. View at Publisher · View at Google Scholar · View at Scopus
  128. A. Leroy, T. Lauwaet, G. De Bruyne, M. Cornelissen, and M. Mareel, “Entamoeba histolytica disturbs the tight junction complex in human enteric T84 cell layers,” FASEB Journal, vol. 14, no. 9, pp. 1139–1146, 2000. View at Google Scholar · View at Scopus
  129. A. Leroy, T. Lauwaet, M. J. Oliveira et al., “Disturbance of tight junctions by Entamoeba histolytica: resistant vertebrate cell types and incompetent trophozoites,” Archives of Medical Research, vol. 31, no. 4, pp. S218–S220, 2000. View at Publisher · View at Google Scholar · View at Scopus
  130. T. Lauwaet, M. J. Oliveira, B. Callewaert et al., “Proteolysis of enteric cell villin by Entamoeba histolytica cysteine proteinases,” Journal of Biological Chemistry, vol. 278, no. 25, pp. 22650–22656, 2003. View at Publisher · View at Google Scholar · View at Scopus
  131. T. Lauwaet, M. J. Oliveira, B. Callewaert, G. De Bruyne, M. Mareel, and A. Leroy, “Proteinase inhibitors TPCK and TLCK prevent Entamoeba histolytica induced disturbance of tight junctions and microvilli in enteric cell layers in vitro,” International Journal for Parasitology, vol. 34, no. 7, pp. 785–794, 2004. View at Publisher · View at Google Scholar · View at Scopus
  132. C. Gitler, E. Calef, and I. Rosenberg, “Cytopathogenicity of Entamoeba histolytica,” Philosophical Transactions of the Royal Society B, vol. 307, no. 1131, pp. 73–85, 1984. View at Google Scholar
  133. X. Que and S. L. Reed, “Cysteine proteinases and the pathogenesis of amebiasis,” Clinical Microbiology Reviews, vol. 13, no. 2, pp. 196–206, 2000. View at Publisher · View at Google Scholar · View at Scopus
  134. S. Spinella, E. Levavasseur, F. Petek, and M. C. Rigothier, “Purification and biochemical characterization of a novel cysteine protease of Entamoeba histolytica,” European Journal of Biochemistry, vol. 266, no. 1, pp. 170–180, 1999. View at Publisher · View at Google Scholar · View at Scopus
  135. S. L. Reed, J. G. Curd, and I. Gigli, “Activation of complement by pathogenic and nonpathogenic Entamoeba histolytica,” Journal of Immunology, vol. 136, no. 6, pp. 2265–2270, 1986. View at Google Scholar · View at Scopus
  136. M. D. L. Munoz, J. Calderon, and M. Rojkind, “The collagenase of Entamoeba histolytica,” Journal of Experimental Medicine, vol. 155, no. 1, pp. 42–51, 1982. View at Google Scholar · View at Scopus
  137. M. De Lourdes Munoz, E. Lamoyi, G. Leon et al., “Antigens in electron-dense granules from Entamoeba histolytica as possible markers for pathogenicity,” Journal of Clinical Microbiology, vol. 28, no. 11, pp. 2418–2424, 1990. View at Google Scholar · View at Scopus
  138. A. Debnath, M. A. Akbar, A. Mazumder, S. Kumar, and P. Das, “Entamoeba histolytica: characterization of human collagen type I and Ca2+ activated differentially expressed genes,” Experimental Parasitology, vol. 110, no. 3, pp. 214–219, 2005. View at Publisher · View at Google Scholar · View at Scopus
  139. H. Gadasi and E. Kessler, “Correlation of virulence and collagenolytic activity in Entamoeba histolytica,” Infection and Immunity, vol. 39, no. 2, pp. 528–531, 1983. View at Google Scholar · View at Scopus
  140. M. A. Magos, M. De La Torre, and M. I. Munoz, “Collagenase activity in clinical isolates of Entamoeba histolytica maintained in xenic cultures,” Archives of Medical Research, vol. 23, no. 2, pp. 115–118, 1992. View at Google Scholar · View at Scopus
  141. M. De Lourdes Munoz, M. Rojkind, and J. Calderon, “Entamoeba histolytica: collagenolytic activity and virulence,” Journal of Protozoology, vol. 31, no. 3, pp. 468–470, 1984. View at Google Scholar · View at Scopus
  142. V. Tsutsumi, A. Ramirez-Rosales, H. Lanz-Mendoza et al., “Entamoeba histolytica: erythrophagocytosis, collagenolysis, and liver abscess production as virulence markers,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 86, no. 2, pp. 170–172, 1992. View at Publisher · View at Google Scholar · View at Scopus
  143. B. Chavez-Munguia, G. Castanon, V. Hernandez-Ramirez, M. Gonzalez-Lazaro, P. Talamas-Rohana, and A. Martinez-Palomo, “Entamoeba histolytica electrondense granules secretion in vitro and in vivo: ultrastructural study,” Microscopy Research and Technique, vol. 75, no. 2, pp. 189–196, 2012. View at Google Scholar
  144. P. Talamas-Rohana and I. Meza, “Interaction between pathogenic amebas and fibronectin: substrate degradation and changes in cytoskeleton organization,” Journal of Cell Biology, vol. 106, no. 5, pp. 1787–1794, 1988. View at Google Scholar · View at Scopus
  145. I. Meza, “Extracellular matrix-induced signaling in Entamoeba histolytica: its role in invasiveness,” Parasitology Today, vol. 16, no. 1, pp. 23–28, 2000. View at Publisher · View at Google Scholar · View at Scopus
  146. J. Vazquez-Prado and I. Meza, “Fibronectin 'receptor' in Entamoeba histolytica: purification and association with the cytoskeleton,” Archives of Medical Research, vol. 23, no. 2, pp. 125–128, 1992. View at Google Scholar · View at Scopus
  147. E. Franco, J. Vazquez-Prado, and I. Meza, “Fibronectin-derived fragments as inducers of adhesion and chemotaxis of Entamoeba histolytica trophozoites,” Journal of Infectious Diseases, vol. 176, no. 6, pp. 1597–1602, 1997. View at Google Scholar · View at Scopus
  148. S. L. Stanley Jr., T. Zhang, D. Rubin, and E. Li, “Role of the Entamoeba histolytica cysteine proteinase in amebic liver abscess formation in severe combined immunodeficient mice,” Infection and Immunity, vol. 63, no. 4, pp. 1587–1590, 1995. View at Google Scholar · View at Scopus
  149. M. Tillack, N. Nowak, H. Lotter et al., “Increased expression of the major cysteine proteinases by stable episomal transfection underlines the important role of EhCP5 for the pathogenicity of Entamoeba histolytica,” Molecular and Biochemical Parasitology, vol. 149, no. 1, pp. 58–64, 2006. View at Publisher · View at Google Scholar · View at Scopus
  150. A. Hellberg, R. Nickel, H. Lotter, E. Tannich, and I. Bruchhaus, “Overexpression of cysteine proteinase 2 in Entamoeba histolytica or Entamoeba dispar increases amoeba-induced monolayer destruction in vitro but does not augment amoebic liver abscess formation in gerbils,” Cellular Microbiology, vol. 3, no. 1, pp. 13–20, 2001. View at Publisher · View at Google Scholar · View at Scopus
  151. H. Irmer, M. Tillack, L. Biller et al., “Major cysteine peptidases of Entamoeba histolytica are required for aggregation and digestion of erythrocytes but are dispensable for phagocytosis and cytopathogenicity,” Molecular Microbiology, vol. 72, no. 3, pp. 658–667, 2009. View at Publisher · View at Google Scholar · View at Scopus
  152. K. McGowan, C. F. Deneke, G. M. Thorne, and S. L. Gorbach, “Entamoeba histolytica cytotoxin: purification, characterization, strain virulence, and protease activity,” Journal of Infectious Diseases, vol. 146, no. 5, pp. 616–625, 1982. View at Google Scholar · View at Scopus
  153. D. M. Faust, J. M. Markiewicz, A. Danckaert, G. Soubigou, and N. Guillen, “Human liver sinusoidal endothelial cells respond to interaction with Entamoeba histolytica by changes in morphology, integrin signalling and cell death,” Cellular Microbiology, vol. 13, no. 7, pp. 1091–1106, 2011. View at Publisher · View at Google Scholar · View at Scopus
  154. S. Kumar, R. Banerjee, N. Nandi, A. H. Sardar, and P. Das, “Anoikis potential of Entameba histolytica secretory cysteine proteases: evidence of contact independent host cell death,” Microbial Pathogenesis, vol. 52, no. 1, pp. 69–76, 2012. View at Google Scholar
  155. J. M. Woof and M. A. Ken, “The function of immunoglobulin A in immunity,” Journal of Pathology, vol. 208, no. 2, pp. 270–282, 2006. View at Publisher · View at Google Scholar · View at Scopus
  156. R. M. Garcia-Nieto, R. Rico-Mata, S. Arias-Negrete, and E. E. Avila, “Degradation of human secretory IgA1 and IgA2 by Entamoeba histolytica surface-associated proteolytic activity,” Parasitology International, vol. 57, no. 4, pp. 417–423, 2008. View at Publisher · View at Google Scholar · View at Scopus
  157. J. C. Carrero, C. Cervantes-Rebolledo, H. Aguilar-Díaz, M. Y. Díaz-Gallardo, J. P. Laclette, and J. Morales-Montor, “The role of the secretory immune response in the infection by Entamoeba histolytica,” Parasite Immunology, vol. 29, no. 7, pp. 331–338, 2007. View at Publisher · View at Google Scholar · View at Scopus
  158. B. L. Kelsall, T. G. F. H. Jackson, V. Gathiram et al., “Secretory immunoglobulin A antibodies to the galactose-inhibitable adherence protein in the saliva of patients with amebic liver disease,” American Journal of Tropical Medicine and Hygiene, vol. 51, no. 4, pp. 454–459, 1994. View at Google Scholar · View at Scopus
  159. J. C. Carrero, M. Y. Diaz, M. Viveros, B. Espinoza, E. Acosta, and L. Ortiz-Ortiz, “Human secretory immunoglobulin A anti-Entamoeba histolytica antibodies inhibit adherence of amebae to MDCK cells,” Infection and Immunity, vol. 62, no. 2, pp. 764–767, 1994. View at Google Scholar · View at Scopus
  160. G. G. Guerrero-Manríquez, F. Sánchez-Ibarra, and E. E. Avila, “Inhibition of Entamoeba histolytica proteolytic activity by human salivary IgA antibodies,” Acta Pathologica, Microbiologica et Immunologica Scandinavica, vol. 106, no. 11, pp. 1088–1094, 1998. View at Google Scholar · View at Scopus
  161. N. León-Sicairos, F. López-Soto, M. Reyes-López, D. Godínez-Vargas, C. Ordaz-Pichardo, and M. De La Garza, “Amoebicidal activity of milk, apo-lactoferrin, slgA and lysozyme,” Clinical Medicine and Research, vol. 4, no. 2, pp. 106–113, 2006. View at Publisher · View at Google Scholar · View at Scopus
  162. R. Haque, D. Mondal, P. Duggal et al., “Entamoeba histolytica infection in children and protection from subsequent amebiasis,” Infection and Immunity, vol. 74, no. 2, pp. 904–909, 2006. View at Publisher · View at Google Scholar · View at Scopus
  163. M. D. Abd Alla, R. Wolf, G. L. White, S. D. Kosanke, D. Cary, and J. J. Verweij, “Efficacy of a Gal-lectin subunit vaccine against experimental Entamoeba histolytica infection and colitis in baboons (Papio sp.),” Vaccine, vol. 30, no. 20, pp. 3068–3075, 2012. View at Google Scholar
  164. T. F. H. G. Jackson and V. Gathiram, “Seroepidemiological study of antibody responses to the zymodemes of Entamoeba histolytica,” Lancet, vol. 1, no. 8431, pp. 716–719, 1985. View at Google Scholar · View at Scopus
  165. J. C. Carrero, A. Contreras-Rojas, B. Sánchez-Hernández et al., “Protection against murine intestinal amoebiasis induced by oral immunization with the 29kDa antigen of Entamoeba histolytica and cholera toxin,” Experimental Parasitology, vol. 126, no. 3, pp. 359–365, 2010. View at Publisher · View at Google Scholar · View at Scopus
  166. D. M. Meneses-Ruiz, J. P. Laclette, H. Aguilar-Diaz, J. Hernandez-Ruiz, A. Luz-Madrigal, and A. Sampieri, “Mucosal delivery of ACNPV baculovirus driving expression of the Gal-lectin LC3 fragment confers protection against amoebic liver abscess in hamster,” International Journal of Biological Sciences, vol. 7, no. 9, pp. 1345–1356, 2011. View at Google Scholar
  167. V. Q. Tran, D. S. Herdman, B. E. Torian, and S. L. Reed, “The neutral cysteine proteinase of Entamoeba histolytica degrades IgG and prevents its binding,” Journal of Infectious Diseases, vol. 177, no. 2, pp. 508–511, 1998. View at Google Scholar · View at Scopus
  168. D. Ricklin, G. Hajishengallis, K. Yang, and J. D. Lambris, “Complement: a key system for immune surveillance and homeostasis,” Nature Immunology, vol. 11, no. 9, pp. 785–797, 2010. View at Publisher · View at Google Scholar · View at Scopus
  169. S. L. Reed, P. G. Sargeaunt, and A. I. Braude, “Resistance to lysis by human serum of pathogenic Entamoeba histolytica,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 77, no. 2, pp. 248–253, 1983. View at Google Scholar · View at Scopus
  170. R. Capin, N. R. Capin, M. Carmona, and L. Ortíz-Ortíz, “Effect of complement depletion on the induction of amebic liver abscess in the hamster,” Archivos de Investigacion Medica, vol. 11, no. 1, pp. 173–180, 1980. View at Google Scholar · View at Scopus
  171. S. L. Reed and I. Gigli, “Lysis of complement-sensitive Entamoeba histolytica by activated terminal complement components. Initiation of complement activation by an extracellular neutral cysteine proteinase,” Journal of Clinical Investigation, vol. 86, no. 6, pp. 1815–1822, 1990. View at Google Scholar · View at Scopus
  172. A. Olivos-Garcia, E. Saavedra, E. Ramos-Martinez, M. Nequiz, and R. Perez-Tamayo, “Molecular nature of virulence in Entamoeba histolytica,” Infection, Genetics and Evolution, vol. 9, no. 6, pp. 1033–1037, 2009. View at Google Scholar
  173. Q. Peng, K. Li, S. H. Sacks, and W. Zhou, “The role of anaphylatoxins C3a and C5a in regulating innate and adaptive immune responses,” Inflammation and Allergy, vol. 8, no. 3, pp. 236–246, 2009. View at Google Scholar · View at Scopus
  174. K. B. Seydel, E. Li, P. E. Swanson, and S. L. Stanley, “Human intestinal epithelial cells produce proinflammatory cytokines in response to infection in a SCID mouse-human intestinal xenograft model of amebiasis,” Infection and Immunity, vol. 65, no. 5, pp. 1631–1639, 1997. View at Google Scholar · View at Scopus
  175. R. Bracha, Y. Nuchamowitz, M. Leippe, and D. Mirelman, “Antisense inhibition of amoebapore expression in Entamoeba histolytica causes a decrease in amoebic virulence,” Molecular Microbiology, vol. 34, no. 3, pp. 463–472, 1999. View at Publisher · View at Google Scholar · View at Scopus
  176. M. Leippe, “Amoebapores,” Parasitology Today, vol. 13, no. 5, pp. 178–183, 1997. View at Publisher · View at Google Scholar · View at Scopus
  177. C. A. Dinarello, “Interleukin-18,” Methods, vol. 19, no. 1, pp. 121–132, 1999. View at Publisher · View at Google Scholar · View at Scopus
  178. R. Séguin, B. J. Mann, K. Keller, and K. Chadee, “The tumor necrosis factor alpha-stimulating region of galactose- inhibitable lectin of Entamoeba histolytica activates gamma interferon- primed macrophages for amebicidal activity mediated by nitric oxide,” Infection and Immunity, vol. 65, no. 7, pp. 2522–2527, 1997. View at Google Scholar · View at Scopus
  179. R. L. Jurado, “Iron, infections, and anemia of inflammation,” Clinical Infectious Diseases, vol. 25, no. 4, pp. 888–895, 1997. View at Google Scholar · View at Scopus
  180. B. R. Otto, A. M. J. J. Verweij-Van Vught, and D. M. MacLaren, “Transferrins and heme-compounds as iron sources for pathogenic bacteria,” Critical Reviews in Microbiology, vol. 18, no. 3, pp. 217–233, 1992. View at Google Scholar · View at Scopus
  181. E. D. Weinberg, “Infection and iron metabolism,” American Journal of Clinical Nutrition, vol. 30, no. 9, pp. 1485–1490, 1977. View at Google Scholar
  182. E. D. Weinberg, “Iron and infection,” Microbiological Reviews, vol. 42, no. 1, pp. 45–66, 1978. View at Google Scholar
  183. E. D. Weinberg and J. Miklossy, “Iron withholding: a defense against disease,” Journal of Alzheimer's Disease, vol. 13, no. 4, pp. 451–463, 2008. View at Google Scholar · View at Scopus
  184. E. D. Weinberg, “Iron and susceptibility to infectious disease,” Science, vol. 184, no. 4140, pp. 952–956, 1974. View at Google Scholar · View at Scopus
  185. F. López-Soto, N. León-Sicairos, M. Reyes-López et al., “Use and endocytosis of iron-containing proteins by Entamoeba histolytica trophozoites,” Infection, Genetics and Evolution, vol. 9, no. 6, pp. 1038–1050, 2009. View at Publisher · View at Google Scholar · View at Scopus
  186. J. Tachezy and M. Wilson, “More on iron acquisition by parasitic protozoa,” Parasitology Today, vol. 15, no. 5, p. 207, 1999. View at Google Scholar · View at Scopus
  187. S. Vaňáčová, D. Rasoloson, J. Rázga, I. Hrdý, J. Kulda, and J. Tachezy, “Iron-induced changes in pyruvate metabolism of Tritrichomonas foetus and involvement of iron in expression of hydrogenosomal proteins,” Microbiology, vol. 147, no. 1, pp. 53–62, 2001. View at Google Scholar · View at Scopus
  188. R. A. Finkelstein, C. V. Sciortino, and M. A. McIntosh, “Role of iron in microbe-host interactions,” Reviews of Infectious Diseases, vol. 5, supplement, pp. S759–S777, 1983. View at Google Scholar · View at Scopus
  189. E. D. Weinberg, “The role of iron in protozoan and fungal infectious diseases,” Journal of Eukaryotic Microbiology, vol. 46, no. 3, pp. 231–238, 1999. View at Google Scholar · View at Scopus
  190. A. Jacobs and M. Worwood, Iron in Biochemistry and Medicine, Academic Press, London, UK, 1980.
  191. S. Said-Fernandez and R. Lopez-Revilla, “Subcellular distribution and stability of the major hemolytic activity of Entamoeba histolytica trophozoites,” Zeitschrift fur Parasitenkunde, vol. 67, no. 3, pp. 249–254, 1982. View at Google Scholar · View at Scopus
  192. V. Tsutsumi, A. Martinez-Palomo, and K. Tanikawa, “Scanning electron microscopy of erythrophagocytosis by Entamoeba histolytica trophozoites,” Archives of Medical Research, vol. 23, no. 2, pp. 173–175, 1992. View at Google Scholar · View at Scopus
  193. J. Vargas-Villarreal, H. Martinez-Rodriguez, J. Castro-Garza, B. D. Mata-Cardenas, M. T. Gonzalez-Garza, and S. Said-Fernandez, “Identification of Entamoeba histolytica intracellular phospholipase A and lysophospholipase L1 activities,” Parasitology Research, vol. 81, no. 4, pp. 320–323, 1995. View at Google Scholar · View at Scopus
  194. A. Chévez, I. Iturbe-Alessio, M. Segura, and D. Corona, “Phagocytosis of human erythrocytes by Entamoeba histolytica,” Archivos de Investigacion Medica, vol. 2, pp. 2–286, 1972. View at Google Scholar · View at Scopus
  195. J. Mora-Galindo and F. Anaya-Velazquez, “Intracellular digestion of human erythrocytes by Entamoeba histolytica: a kinetic study in vitro,” Archives of Medical Research, vol. 24, no. 4, pp. 347–351, 1993. View at Google Scholar · View at Scopus
  196. J. Mora-Galindo, M. Gutierrez-Lozano, and F. Anaya-Velazquez, “Entamoeba histolytica: kinetics of hemolytic activity, erythrophagocytosis and digestion of erythrocytes,” Archives of Medical Research, vol. 28, pp. 200–201, 1997. View at Google Scholar · View at Scopus
  197. R. Jarumilinta and B. G. Maegraith, “The patterns of some proteolytic enzymes of Entamoeba histolytica and Acanthamoeba sp—I. The action of E. histolytica and Acanthamoeba sp. on protein substrates,” Annals of Tropical Medicine and Parasitology, vol. 55, pp. 505–517, 1961. View at Google Scholar · View at Scopus
  198. I. Becker, R. Pérez-Montfort, A. Pérez-Torres, A. Rondán-Zárate, I. Montfort, and R. Pérez-Tamayo, “Entamoeba histolytica: localization of a 30-kDa cysteine proteinase using a monoclonal antibody,” Experimental Parasitology, vol. 82, no. 2, pp. 171–181, 1996. View at Publisher · View at Google Scholar · View at Scopus
  199. J. Mora-Galindo, F. Anaya-Velázquez, S. Ramírez-Romo, and A. González-Robles, “Entamoeba histolytica: correlation of assessment methods to measure erythrocyte digestion, and effect of cysteine proteinases inhibitors in HM-1:IMSS and HK-9:NIH strains,” Experimental Parasitology, vol. 108, no. 3-4, pp. 89–100, 2004. View at Publisher · View at Google Scholar · View at Scopus
  200. A. Bezkorovainy, “Biochemistry of nonheme iron in man—I. Iron proteins and cellular iron metabolism,” Clinical Physiology and Biochemistry, vol. 7, no. 1, pp. 1–17, 1989. View at Google Scholar · View at Scopus
  201. J. A. Fernandez-Pol and D. J. Klos, “Isolation and characterization of Normal Rat Kidney cell membrane proteins with affinity for transferrin,” Biochemistry, vol. 19, no. 17, pp. 3904–3912, 1980. View at Google Scholar · View at Scopus
  202. M. Reyes-López, J. D. J. Serrano-Luna, E. Negrete-Abascal, N. León-Sicairos, A. L. Guerrero-Barrera, and M. De la Garza, “Entamoeba histolytica: transferrin binding proteins,” Experimental Parasitology, vol. 99, no. 3, pp. 132–140, 2001. View at Publisher · View at Google Scholar · View at Scopus
  203. J. Langhorst and J. Boone, “Fecal lactoferrin as a noninvasive biomarker in inflammatory bowel diseases,” Drugs Today, vol. 48, no. 2, pp. 149–161, 2012. View at Google Scholar
  204. R. D. Brines and J. H. Brock, “The effect of trypsin and chymotrypsin on the in vitro antimicrobial and iron-binding properties of lactoferrin in human milk and bovine colostrum. Unusual resistance of human apolactoferrin to proteolytic digestion,” Biochimica et Biophysica Acta, vol. 759, no. 3, pp. 229–235, 1983. View at Publisher · View at Google Scholar · View at Scopus
  205. P. Aisen and A. Leibman, “Lactoferrin and transferrin: a comparative study,” Biochimica et Biophysica Acta, vol. 257, no. 2, pp. 314–323, 1972. View at Google Scholar · View at Scopus
  206. E. N. Baker and H. M. Baker, “Molecular structure, binding properties and dynamics of lactoferrin,” Cellular and Molecular Life Sciences, vol. 62, no. 22, pp. 2531–2539, 2005. View at Publisher · View at Google Scholar · View at Scopus
  207. J. A. Talbot, K. Nielsen, and L. B. Corbeil, “Cleavage of proteins of reproductive secretions by extracellular proteinases of Tritrichomonas foetus,” Canadian Journal of Microbiology, vol. 37, no. 5, pp. 384–390, 1991. View at Google Scholar · View at Scopus
  208. P. Arosio and S. Levi, “Ferritin, iron homeostasis, and oxidative damage,” Free Radical Biology and Medicine, vol. 33, no. 4, pp. 457–463, 2002. View at Publisher · View at Google Scholar · View at Scopus
  209. P. M. Harrison and P. Arosio, “The ferritins: molecular properties, iron storage function and cellular regulation,” Biochimica et Biophysica Acta, vol. 1275, no. 3, pp. 161–203, 1996. View at Publisher · View at Google Scholar · View at Scopus
  210. A. M. Koorts and M. Viljoen, “Ferritin and ferritin isoforms I: structure-function relationships, synthesis, degradation and secretion,” Archives of Physiology and Biochemistry, vol. 113, no. 1, pp. 30–54, 2007. View at Publisher · View at Google Scholar · View at Scopus
  211. X. Liu and E. C. Theil, “Ferritins: dynamic management of biological iron and oxygen chemistry,” Accounts of Chemical Research, vol. 38, no. 3, pp. 167–175, 2005. View at Google Scholar
  212. R. Lopez-Revilla and S. Said-Fernandez, “Cytopathogenicity of Entamoeba histolytica: hemolytic activity of trophozoite homogenates,” American Journal of Tropical Medicine and Hygiene, vol. 29, no. 2, pp. 209–212, 1980. View at Google Scholar · View at Scopus
  213. C. Shimokawa, M. Kabir, M. Taniuchi, D. Mondal, S. Kobayashi, and I. K. M. Ali, “Entamoeba moshkovskii is associated with diarrhea in infants and causes diarrhea and colitis in mice,” Journal of Infectious Diseases, vol. 206, no. 5, pp. 744–751, 2012. View at Google Scholar
  214. C. G. Clark and L. S. Diamond, “The Laredo strain and other Entamoeba histolytica-like amoebae are Entamoeba moshkovskii,” Molecular and Biochemical Parasitology, vol. 46, no. 1, pp. 11–18, 1991. View at Publisher · View at Google Scholar · View at Scopus
  215. R. D. Heredia, J. A. Fonseca, and M. C. López, “Entamoeba moshkovskii perspectives of a new agent to be considered in the diagnosis of amebiasis,” Acta Tropica, vol. 123, no. 3, pp. 139–145, 2012. View at Google Scholar
  216. M. Goldman, “Entamoeba histolytica-like amoebae ocurring in man,” Bulletin of the World Health Organization, vol. 40, pp. 355–364, 1969. View at Google Scholar
  217. I. K. M. Ali, C. G. Clark, and W. A. Petri Jr., “Molecular epidemiology of amebiasis,” Infection, Genetics and Evolution, vol. 8, no. 5, pp. 698–707, 2008. View at Publisher · View at Google Scholar · View at Scopus
  218. Z. Hamzah, S. Petmitr, M. Mungthin, S. Leelayoova, and P. Chavalitshewinkoon-Petmitr, “Development of multiplex real-time polymerase chain reaction for detection of Entamoeba histolytica, Entamoeba dispar, and Entamoeba moshkovskii in clinical specimens,” American Journal of Tropical Medicine and Hygiene, vol. 83, no. 4, pp. 909–913, 2010. View at Publisher · View at Google Scholar · View at Scopus
  219. WHO, ““Amoebiasis,” World Health Organization/Pan America Health Organization Expert Consultation on Amoebiasis,” WHO Weekly Epidemiological Record, vol. 72, pp. 97–100, 1997. View at Google Scholar
  220. S. S. Dolabella, J. Serrano-Luna, F. Navarro-García et al. et al., “Amoebic liver abscess production by Entamoeba dispar,” Annals of Hepatology, vol. 11, no. 1, pp. 107–117, 2012. View at Google Scholar
  221. W. M. Spice and J. P. Ackers, “The effect of axenic versus xenic culture conditions on the total and secreted proteolytic activity of Entamoeba histolytica strains,” Archives of Medical Research, vol. 23, no. 2, pp. 91–93, 1992. View at Google Scholar · View at Scopus
  222. B. Loftus, I. Anderson, R. Davies et al., “The genome of the protist parasite Entamoeba histolytica,” Nature, vol. 433, no. 7028, pp. 865–868, 2005. View at Publisher · View at Google Scholar · View at Scopus
  223. I. Bruchhaus and E. Tannich, “A gene highly homologous to ACP1 encoding cysteine proteinase 3 in Entamoeba histolytica is present and expressed in E. dispar,” Parasitology Research, vol. 82, no. 2, pp. 189–192, 1996. View at Publisher · View at Google Scholar · View at Scopus
  224. E. Tannich, “Recent advances in DNA-mediated gene transfer of Entamoeba histolytica,” Parasitology Today, vol. 12, no. 5, pp. 198–200, 1996. View at Publisher · View at Google Scholar · View at Scopus
  225. B. N. Mitra, T. Yasuda, S. Kobayashi, Y. Saito-Nakano, and T. Nozaki, “Differences in morphology of phagosomes and kinetics of acidification and degradation in phagosomes between the pathogenic Entamoeba histolytica and the non-pathogenic Entamoeba dispar,” Cell Motility and the Cytoskeleton, vol. 62, no. 2, pp. 84–99, 2005. View at Publisher · View at Google Scholar · View at Scopus
  226. J. E. Teixeira, A. Sateriale, K. E. Bessoff, and C. D. Huston, “Control of Entamoeba histolytica adherence involves metallosurface protease 1, an M8 family surface metalloprotease with homology to leishmanolysin,” Infection and Immunity, vol. 80, no. 6, pp. 2165–2176, 2012. View at Google Scholar
  227. F. Ebert, A. Bachmann, K. Nakada-Tsukui et al., “An Entamoeba cysteine peptidase specifically expressed during encystation,” Parasitology International, vol. 57, no. 4, pp. 521–524, 2008. View at Publisher · View at Google Scholar · View at Scopus
  228. G. Jeelani, D. Sato, A. Husain, A. Escueta-de Cadiz, M. Sugimoto, and T. Soga, “Metabolic profiling of the protozoan parasite Entamoeba invadens revealed activation of unpredicted pathway during encystation,” PLoS ONE, vol. 7, no. 5, Article ID e37740, 2012. View at Google Scholar
  229. E. E. Ávila, M. Sánchez-Garza, and J. Calderón, “Entamoeba histolytica and E. invadens: sulfhydryl-dependent proteolytic activity1,” Journal of Eukaryotic Microbiology, vol. 32, no. 1, pp. 163–166, 1985. View at Google Scholar
  230. S. K. Ghosh, J. Field, M. Frisardi et al., “Chitinase secretion by encysting Entamoeba invadens and transfected Entamoeba histolytica trophozoites: localization of secretory vesicles, endoplasmic reticulum, and Golgi apparatus,” Infection and Immunity, vol. 67, no. 6, pp. 3073–3081, 1999. View at Google Scholar · View at Scopus
  231. K. L. Van Dellen, A. Chatterjee, D. M. Ratner et al., “Unique posttranslational modifications of chitin-binding lectins of Entamoeba invadens cyst walls,” Eukaryotic Cell, vol. 5, no. 5, pp. 836–848, 2006. View at Publisher · View at Google Scholar · View at Scopus
  232. J. Gonzalez, G. Bai, U. Frevert, E. J. Corey, and D. Eichinger, “Proteasome-dependent cyst formation and stage-specific ubiquitin mRNA accumulation in Entamoeba invadens,” European Journal of Biochemistry, vol. 264, no. 3, pp. 897–904, 1999. View at Publisher · View at Google Scholar · View at Scopus
  233. H. Trabelsi, F. Dendana, A. Sellami, H. Sellami, F. Cheikhrouhou, and S. Neji, “Pathogenic fre-living amoeba: epidemiology and clinical review,” Pathologie Biologie, vol. 60, no. 6, pp. 399–405, 2012. View at Google Scholar
  234. M. Omaña-Molina, F. Navarro-García, A. González-Robles, J. d. Serrano-Luna, R. Campos-Rodríguez, and A. Martínez-Palomo, “Induction of morphological and electrophysiological changes in hamster cornea after in vitro interaction with trophozoites of Acanthamoeba spp,” Infection and Immunity, vol. 72, no. 6, pp. 3245–3251, 2004. View at Google Scholar
  235. M. Garate, Z. Cao, E. Bateman, and N. Panjwani, “Cloning and characterization of a novel mannose-binding protein of Acanthamoeba,” Journal of Biological Chemistry, vol. 279, no. 28, pp. 29849–29856, 2004. View at Publisher · View at Google Scholar · View at Scopus
  236. Y. C. Hong, W. M. Lee, H. H. Kong, H. J. Jeong, and D. I. Chung, “Molecular cloning and characterization of a cDNA encoding a laminin-binding protein (AhLBP) from Acanthamoeba healyi,” Experimental Parasitology, vol. 106, no. 3-4, pp. 95–102, 2004. View at Publisher · View at Google Scholar · View at Scopus
  237. B. Da Rocha-Azevedo, M. Jamerson, G. A. Cabral, F. C. Silva-Filho, and F. Marciano-Cabral, “Acanthamoeba interaction with extracellular matrix glycoproteins: biological and biochemical characterization and role in cytotoxicity and invasiveness,” Journal of Eukaryotic Microbiology, vol. 56, no. 3, pp. 270–278, 2009. View at Publisher · View at Google Scholar · View at Scopus
  238. V. R. Gordon, E. K. Asem, M. H. Vodkin, and G. L. McLaughlin, “Acanthamoeba binds to extracellular matrix proteins in vitro,” Investigative Ophthalmology and Visual Science, vol. 34, no. 3, pp. 658–662, 1993. View at Google Scholar · View at Scopus
  239. L. Wang, E. K. Asem, and G. L. McLaughlin, “Calcium enhances Acanthamoeba polyphaga binding to extracellular matrix proteins,” Investigative Ophthalmology and Visual Science, vol. 35, no. 5, pp. 2421–2426, 1994. View at Google Scholar · View at Scopus
  240. J. Sissons, S. K. Kwang, M. Stins, S. Jayasekera, S. Alsam, and N. A. Khan, “Acanthamoeba castellanii induces host cell death via a phosphatidylinositol 3-kinase-dependent mechanism,” Infection and Immunity, vol. 73, no. 5, pp. 2704–2708, 2005. View at Publisher · View at Google Scholar · View at Scopus
  241. H. Alizadeh, S. Neelam, M. Hurt, and J. Y. Niederkorn, “Role of contact lens wear, bacterial flora, and mannose-induced pathogenic protease in the pathogenesis of amoebic keratitis,” Infection and Immunity, vol. 73, no. 2, pp. 1061–1068, 2005. View at Publisher · View at Google Scholar · View at Scopus
  242. A. Ferrante and E. J. Bates, “Elastase in the pathogenic free-living amoebae Naegleria and Acanthamoeba spp,” Infection and Immunity, vol. 56, no. 12, pp. 3320–3321, 1988. View at Google Scholar · View at Scopus
  243. P. N. Mortazavi, E. Keisary, L. N. Loh, S. Y. Jung, and N. A. Khan, “Possible roles of phospholipase A2 in the biological activities of Acanthamoeba castellanii (T4 Genotype),” Protist, vol. 162, no. 1, pp. 168–176, 2011. View at Publisher · View at Google Scholar · View at Scopus
  244. S. C. Alfieri, C. E. B. Correia, S. A. Motegi, and E. M. F. Pral, “Proteinase activities in total extracts and in medium conditioned by Acanthamoeba polyphaga trophozoites,” Journal of Parasitology, vol. 86, no. 2, pp. 220–227, 2000. View at Google Scholar · View at Scopus
  245. E. Hadas and T. Mazur, “Proteolytic enzymes of pathogenic and non-pathogenic strains of Acanthamoeba spp,” Tropical Medicine and Parasitology, vol. 44, no. 3, pp. 197–200, 1993. View at Google Scholar · View at Scopus
  246. M. M. Mitra, H. Alizadeh, R. D. Gerard, and J. Y. Niederkorn, “Characterization of a plasminogen activator produced by Acanthamoeba castellanii,” Molecular and Biochemical Parasitology, vol. 73, no. 1-2, pp. 157–164, 1995. View at Publisher · View at Google Scholar · View at Scopus
  247. K. Mitro, A. Bhagavathiammai, O. M. Zhou et al., “Partial characterization of the proteolytic secretions of Acanthamoeba polyphaga,” Experimental Parasitology, vol. 78, no. 4, pp. 377–385, 1994. View at Publisher · View at Google Scholar · View at Scopus
  248. N. A. Khan, E. L. Jarroll, N. Panjwani, Z. Cao, and T. A. Paget, “Proteases as markers for differentiation of pathogenic and nonpathogenic species of Acanthamoeba,” Journal of Clinical Microbiology, vol. 38, no. 8, pp. 2858–2861, 2000. View at Google Scholar · View at Scopus
  249. Y. He, J. Y. Niederkorn, J. P. McCulley et al., “In vivo and in vitro collagenolytic activity of Acanthamoeba castellanii,” Investigative Ophthalmology and Visual Science, vol. 31, no. 11, pp. 2235–2240, 1990. View at Google Scholar · View at Scopus
  250. G. A. Ferreira, A. C. M. Magliano, E. M. F. Pral, and S. C. Alfieri, “Elastase secretion in Acanthamoeba polyphaga,” Acta Tropica, vol. 112, no. 2, pp. 156–163, 2009. View at Publisher · View at Google Scholar · View at Scopus
  251. H. H. Kong, T. H. Kim, and D. I. Chung, “Purification and characterization of a secretory serine proteinase of Acanthamoeba healyi isolated from GAE,” Journal of Parasitology, vol. 86, no. 1, pp. 12–17, 2000. View at Google Scholar · View at Scopus
  252. W. T. Kim, H. H. Kong, Y. R. Ha et al., “Comparison of specific activity and cytopathic effects of purified 33 kDa serine proteinase from Acanthamoeba strains with different degree of virulence,” The Korean Journal of Parasitology, vol. 44, no. 4, pp. 321–330, 2006. View at Publisher · View at Google Scholar · View at Scopus
  253. A. J. Martinez, S. M. Markowitz, and R. J. Duma, “Experimental pneumonitis and encephalitis caused by Acanthamoeba in mice: pathogenesis and ultrastructural features,” Journal of Infectious Diseases, vol. 31, no. 6, pp. 692–699, 1975. View at Google Scholar · View at Scopus
  254. A. Martínez, “Free-living amoeba: natural history, prevention, diagnostic, pathology and treatment of disease,” p. 156, CRC Press, Boca Raton, Fla, USA, 1985. View at Google Scholar
  255. A. J. Martinez, “Infection of the central nervous system due to Acanthamoeba,” Reviews of Infectious Diseases, vol. 13, no. 5, pp. S399–S402, 1991. View at Google Scholar · View at Scopus
  256. N. A. Khan, “Acanthamoeba invasion of the central nervous system,” International Journal for Parasitology, vol. 37, no. 2, pp. 131–138, 2007. View at Publisher · View at Google Scholar · View at Scopus
  257. S. Alsam, J. Sissons, S. Jayasekera, and N. A. Khan, “Extracellular proteases of Acanthamoeba castellanii (encephalitis isolate belonging to T1 genotype) contribute to increased permeability in an in vitro model of the human blood-brain barrier,” Journal of Infection, vol. 51, no. 2, pp. 150–156, 2005. View at Publisher · View at Google Scholar · View at Scopus
  258. N. A. Khan and R. Siddiqui, “Acanthamoeba affects the integrity of human brain microvascular endothelial cells and degrades the tight junction proteins,” International Journal for Parasitology, vol. 39, no. 14, pp. 1611–1616, 2009. View at Publisher · View at Google Scholar · View at Scopus
  259. J. F. De Jonckheere, “Origin and evolution of the worldwide distributed pathogenic amoeboflagellate Naegleria fowleri,” Infection, Genetics and Evolution, vol. 11, no. 7, pp. 1520–1528, 2011. View at Google Scholar
  260. F. Marciano-Cabral, “Biology of Naegleria spp,” Microbiological Reviews, vol. 52, no. 1, pp. 114–133, 1988. View at Google Scholar · View at Scopus
  261. I. Cervantes-Sandoval, J. D. J. Serrano-Luna, E. García-Latorre, V. Tsutsumi, and M. Shibayama, “Characterization of brain inflammation during primary amoebic meningoencephalitis,” Parasitology International, vol. 57, no. 3, pp. 307–313, 2008. View at Publisher · View at Google Scholar · View at Scopus
  262. K. L. Jarolim, J. K. McCosh, M. J. Howard, and D. T. John, “A light microscopy study of the migration of Naegleria fowleri from the nasal submucosa to the central nervous system during the early stage of primary amebic meningoencephalitis in mice,” Journal of Parasitology, vol. 86, no. 1, pp. 50–55, 2000. View at Google Scholar · View at Scopus
  263. K. L. Han, H. J. Lee, H. S. Myeong, H. J. Shin, K. I. Im, and S. J. Park, “The involvement of an integrin-like protein and protein kinase C in amoebic adhesion to fibronectin and amoebic cytotoxicity,” Parasitology Research, vol. 94, no. 1, pp. 53–60, 2004. View at Publisher · View at Google Scholar · View at Scopus
  264. R. Herbst, C. Ott, T. Jacobs, T. Marti, F. Marciano-Cabral, and M. Leippe, “Pore-forming polypeptides of the pathogenic protozoon Naegleria fowleri,” Journal of Biological Chemistry, vol. 277, no. 25, pp. 22353–22360, 2002. View at Publisher · View at Google Scholar · View at Scopus
  265. J. D. E. Young and D. M. Lowrey, “Biochemical and functional characterization of a membrane-associated pore-forming protein from the pathogenic ameboflagellate Naegleria fowleri,” Journal of Biological Chemistry, vol. 264, no. 2, pp. 1077–1083, 1989. View at Google Scholar · View at Scopus
  266. S. E. Barbour and F. Marciano-Cabral, “Naegleria fowleri amoebae express a membrane-associated calcium-independent phospholipase A2,” Biochimica et Biophysica Acta, vol. 1530, no. 2-3, pp. 123–133, 2001. View at Publisher · View at Google Scholar · View at Scopus
  267. D. E. Fulford and F. Marciano-Cabral, “Cytolytic activity of Naegleria fowleri cell-free extract,” Journal of Protozoology, vol. 33, no. 4, pp. 498–502, 1986. View at Google Scholar · View at Scopus
  268. M. Shibayama, J. D. J. Serrano-Luna, S. Rojas-Hernández, R. Campos-Rodríguez, and V. Tsutsumi, “Interaction of secretory immunoglobulin A antibodies with Naegleria fowleri trophozoites and collagen type I,” Canadian Journal of Microbiology, vol. 49, no. 3, pp. 164–170, 2003. View at Publisher · View at Google Scholar · View at Scopus
  269. I. Cervantes-Sandoval, J. Jesús Serrano-Luna, J. Pacheco-Yépez, A. Silva-Olivares, V. Tsutsumi, and M. Shibayama, “Differences between Naegleria fowleri and Naegleria gruberi in expression of mannose and fucose glycoconjugates,” Parasitology Research, vol. 106, no. 3, pp. 695–701, 2010. View at Publisher · View at Google Scholar · View at Scopus
  270. M. Jamerson, B. da Rocha-Azevedo, G. A. Cabral, and F. Marciano-Cabral, “Pathogenic Naegleria fowleri and non-pathogenic Naegleria lovaniensis exhibit differential adhesion to, and invasion of, extracellular matrix proteins,” Microbiology, vol. 158, pp. 791–803, 2012. View at Google Scholar
  271. F. L. Schuster and G. S. Visvesvara, “Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals,” International Journal for Parasitology, vol. 34, no. 9, pp. 1001–1027, 2004. View at Publisher · View at Google Scholar · View at Scopus
  272. B. A. Rideout, C. H. Gardiner, I. H. Stalis, J. R. Zuba, T. Hadfield, and G. S. Visvesvara, “Fatal infections with Balamuthia mandrillaris (a free-living amoeba) in gorillas and other old world primates,” Veterinary Pathology, vol. 34, no. 1, pp. 15–22, 1997. View at Google Scholar · View at Scopus
  273. T. H. Dunnebacke, F. L. Schuster, S. Yagi, and G. C. Booton, “Balamuthia mandrillaris from soil samples,” Microbiology, vol. 150, no. 9, pp. 2837–2842, 2004. View at Publisher · View at Google Scholar · View at Scopus
  274. A. Matin and N. A. Khan, “Demonstration and partial characterization of ecto-ATPase in Balamuthia mandrillaris and its possible role in the host-cell interactions,” Letters in Applied Microbiology, vol. 47, no. 4, pp. 348–354, 2008. View at Publisher · View at Google Scholar · View at Scopus
  275. A. Martínez and G. S. Visvesvara, “Balamuthia mandrillaris infection,” Journal of Medical Microbiology, vol. 50, no. 3, pp. 205–207, 2001. View at Google Scholar
  276. K. Janitschke, A. J. Martínez, G. S. Visvesvara, and F. Schuster, “Animal model Balamuthia mandrillaris CNS infection: contrast and comparison in immunodeficient and immunocompetent mice: a murine model of “granulomatous” amebic encephalitis,” Journal of Neuropathology and Experimental Neurology, vol. 55, no. 7, pp. 815–821, 1996. View at Google Scholar · View at Scopus
  277. A. F. Kiderlen and U. Laube, “Balamuthia mandrillaris, an opportunistic agent of granulomatous amebic encephalitis, infects the brain via the olfactory nerve pathway,” Parasitology Research, vol. 94, no. 1, pp. 49–52, 2004. View at Publisher · View at Google Scholar · View at Scopus
  278. F. L. Schuster, T. H. Dunnebacke, G. C. Booton et al., “Environmental isolation of Balamuthia mandrillaris associated with a case of amebic encephalitis,” Journal of Clinical Microbiology, vol. 41, no. 7, pp. 3175–3180, 2003. View at Publisher · View at Google Scholar · View at Scopus
  279. F. L. Schuster and G. S. Visvesvara, “Axenic growth and drug sensitivity studies of Balamuthia mandrillaris, an agent of amebic meningoencephalitis in humans and other animals,” Journal of Clinical Microbiology, vol. 34, no. 2, pp. 385–388, 1996. View at Google Scholar · View at Scopus
  280. S. Jayasekera, A. Matin, J. Sissons, A. H. Maghsood, and N. A. Khan, “Balamuthia mandrillaris stimulates interleukin-6 release in primary human brain microvascular endothelial cells via a phosphatidylinositol 3-kinase-dependent pathway,” Microbes and Infection, vol. 7, no. 13, pp. 1345–1351, 2005. View at Publisher · View at Google Scholar · View at Scopus
  281. B. Rocha-Azevedo, M. Jamerson, G. A. Cabral, F. C. Silva-Filho, and F. Marciano-Cabral, “The interaction between the amoeba Balamuthia mandrillaris and extracellular matrix glycoproteins in vitro,” Parasitology, vol. 134, no. 1, pp. 51–58, 2007. View at Publisher · View at Google Scholar · View at Scopus